- $\max\{a, 0\} = a \text{ if } a \in \mathbb{N}^0$ ,
- $\max\{a, b\} = \max\{b, a\},$
- $\max\{a, a\} = a$ ,
- $\max\{a, \max\{b, c\}\} = \max\{a, b, c\} = \max\{\max\{a, b\}, c\}.$



Thus we have that  $(\mathbb{Z}, \max)$  where  $\max(a, b) = \max\{a, b\}$  is a semigroup and  $(\mathbb{N}^0, \max)$  is a monoid.

Note. The following identities hold for all  $a, b, c \in \mathbb{Z}$ 

$$(\star) \begin{cases} a + \max\{b,c\} = \max\{a+b,a+c\}, \\ \max\{b,c\} = a + \max\{b-a,c-a\}. \end{cases}$$

Put  $B = \mathbb{N}^0 \times \mathbb{N}^0$ . On B we define a 'binary operation' by

$$(a,b)(c,d) = (a-b+t,d-c+t),$$

where  $t = \max\{b, c\}$ .

**Proposition 1.10.** B is a monoid with identity (0,0).

*Proof.* With  $(a, b), (c, d) \in B$  and  $t = \max\{b, c\}$  we have  $t - b \ge 0$  and  $t - c \ge 0$ . Thus we have  $a - b + t \ge a$  and  $d - c + t \ge d$ . Therefore, in particular  $(a - b + t, d - c + t) \in B$  so multiplication is closed. We have that  $(0, 0) \in B$  and for any  $(a, b) \in B$  we have

$$(0,0)(a,b) = (0-0+\max\{0,a\}, b-a+\max\{0,a\}),$$
  
=  $(0-0+a, b-a+a),$   
=  $(a,b),$   
=  $(a,b)(0,0).$ 

Therefore (0,0) is the identity of B.

We need to verify associativity.

Let  $(a, b), (c, d), (e, f) \in B$ . Then

$$\begin{split} \big((a,b)(c,d)\big)(e,f) &= \big(a-b+\max\{b,c\},d-c+\max\{b,c\}\big)(e,f), \\ &= \big(a-b-d+c+\max\{d-c+\max\{b,c\},e\},\\ &f-e+\max\{d-c+\max\{b,c\},e\}\big). \\ (a,b)\big((c,d)(e,f)\big) &= (a,b)\big(c-d+\max\{d,e\},f-e+\max\{d,e\}\big),\\ &= (a-b+\max\{b,c-d+\max\{d,e\}\})\\ &f-e-c+d+\max\{b,c-d+\max\{d,e\}\}\big). \end{split}$$

Now we have to show that