SEMIGROUP THEORY A LECTURE COURSE

VICTORIA GOULD

1. The Basic Concept

DEFINITION 1.1. A semigroup is a pair (S,*) where S is a non-empty set and * is an associative binary operation on S. [i.e. * is a function $S \times S \to S$ with $(a,b) \mapsto a*b$ and for all $a,b,c \in S$ we have a*(b*c) = (a*b)*c].

n	Semigroups	Groups
1	1	1
2	4	1
3	18	1
4	126	2
5	1160	1
6	15973	2
7	836021	1
8	1843120128	5
9	52989400714478	2

The number (whatever it means) of semigroups and groups of order n

We abbreviate "(S,*)" by "S" and often omit * in "a*b" and write "ab". By induction $a_1a_2\ldots a_n$ is unambiguous. Thus we write a^n for

$$\underbrace{aa \dots a}_{n \text{ times}}$$
.

Index Laws For all $n, m \in \mathbb{N} = \{1, 2, \dots\}$:

$$a^n a^m = a^{n+m}$$

$$(a^n)^m = a^{nm}$$
.

DEFINITION 1.2. A monoid M is a semigroup with an identity, i.e. there exists $1 \in M$ such that 1a = a = a1 for all $a \in M$.

Putting $a^0 = 1$ then the index laws hold for all $n, m \in \mathbb{N}^0 = \{0, 1, 2, \ldots\}$.