Combinatorial Optimization Problems

4th grade – S & OP Branch/ 2019-2020 Introduced By Dr. Faez Hassan Ali

Chapter Three - 3 Aircraft Landing Problems

Solving ALP using Heuristic and CE Methods

Parallel Improving Technquie

The order between aircraft (**sequencing the aircraft**) is setup according to priority rules which are based on the variables:

- **E**_i: The priority is given to the aircraft which has the sooner earliest landing time.
- T_i : The priority is given to the aircraft which has the earliest target landing time.
- L_i : The priority is given to the aircraft which has the earliest latest landing time.
- E_i/g_i : The priority is given to the aircraft which has the soonest earliest time.
- L_i/h_i: The priority is given to the aircraft which has the soonest latest time.
- Ti /(g_i+h_i): The priority is given to the aircraft which has the soonest target.

• 1/(g_i+h_i): The priority is given to the aircraft which causes the most important

advance and lateness penalty.

Example: Let N=3

We have the following priority rules:

 E_i : we have the sequence 3,1,2.

 T_i : we have the sequence 3,1,2.

 L_i : we have the sequence 3,1,2.

	P_1	P_2	P_3
E_{i}	129	195	89
T_{i}	155	258	98
L_{i}	559	744	510
g_{i}	10	10	30
h _i	10	10	30

		S_{ii}	
	1	2	3
1	0	3	15
2	3	0	15
3	15	15	0

 $E_i/g_i=(12.9,19,5,2.97)$, we have the sequence 3,1,2.

 L_i/h_i =(55.9,74.9,17), we have the sequence 3,1,2.

 $T_i/(g_i+h_i)=(7.75,12.9,1.63)$, we have the sequence 3,1,2.

 $1/(g_i+h_i)=(0.05,0.05,0.03)$, we have the sequence 3,1,2 or 3,2,1.

Solving ALP using Heuristic and CE Methods

Parallel Improving Technquie

```
The adjusting landing time (scheduling aircraft)
Parallel Improving Algorithm (PIA)
Let P be the list of aircraft set up according to a priority rule and O={}.
1. t_{p_1} \leftarrow T_{p_1}; P_1 \in O.
2. FOR i = 2 : N
       t_{p_i} \leftarrow \max(T_{p_i}, \max_{p_{i \in O}}(t_{p_j} + S_{p_i,p_j}))
  END {FOR i}
3. REPEAT
  Calculate penalty Cost Z
   IF (t_{p_i} > T_{p_i})
        Reduce the landing time by 1 unit of time
    ELSE \{ t_{Di} \leq T_{Di} \}
         Increase the landing time by 1 unit of time
   END {IF}
   IF (the solution is unfeasible)
        Reject the change and keep the last feasible solution.
        BREAK.
   END {IF}
 UNTIL (there is increase of penalty cost)
```


Parallel Improving Technqiue

Example: For N=7

	P_1	P_2	P_3	P_4	P ₅	P_6	P_7
E_{i}	129	195	89	96	110	120	124
T _i	155	258	98	106	123	135	138
L_{i}	559	744	510	521	555	576	577
g_{i}	10	10	30	30	30	30	30
h _i	10	10	30	30	30	30	30

S _{ii}	1	2	3	4	5	6	7
1	0	3	15	15	15	15	15
2	3	0	15	15	15	15	15
3	15	15	0	8	8	8	8
4	15	15	8	0	8	8	8
5	15	15	8	8	0	8	8
6	15	15	8	8	8	0	8
7	15	15	8	8	8	8	0

Suppose that the priority rule is the Ti. The order is as follows:

_								
	P_{i}	3	4	5	6	7	1	2

assign landing time to the 1st aircraft in the list $(P_1=3)$: $t_3=T_3=98$, $O=\{3\}$, then:

P_{i}	3	4	5	6	7	1	2	Z
t _i	98							0

For the 2^{nd} aircraft in the list $(P_2=4)$, then

 $t_4 \leftarrow \max(T_4, \max_{s \in O}(t_s + S_{s,4})) = \max(106, \max(98+8)) = 106, O = \{3,4\}.$

			FJEO					
P_{i}	3	4	5	6	7	1	2	Z
t _i	98	106						0

For the 3^{rd} aircraft in the list ($P_3=5$), then

 $t_5 \leftarrow \max(T_5, \max(t_3 + S_{3,5}, t_4 + S_{4,5})) = \max(123, \max(98 + 8, 106 + 8)) = 123, O = \{3,4,5\}.$

P_{i}	3	4	5	6	7	1	2	Z
t _i	98	106	123					0

Parallel Improving Technqiue

Continue example

For the 4th aircraft in the list (P_4 =6), then t₆=max(135,max(98+8,106+8,123+8))=135, O={3,4,5,6}, Z=0.

P_{i}	3	4	5	6	7	1	2	Z
t_{i}	98	106	123	135				0

For the 5^{th} aircraft in the list ($P_5=7$), then

 t_7 =max(138,max(98+8,106+8,123+8,135+8))=143 \neq 138, O={3,4,5,6,7},

P_{i}	3	4	5	6	7	1	2	Z
t_{i}	98	106	123	135	143			150

here we need adjusting the landing time t_7 =142, then t_6 =134:

P _i	3	4	5	6	7	1	2	Z
t _i	98	106	123	134	142			150

And continue in decreasing until we obtain:

P _i	3	4	5	6	7	1	2	Z
t_i	98	106	123	131	139			150

If we continue another step we obtain:

P _i	3	4	5	6	7	1	2	Z
t _i	98	106	122	130	138			180

Since Z=180, we ignore this step and back to the last step when Z=150.

Parallel Improving Technqiue

Continue example

For the 6^{th} aircraft in the list ($P_6=1$), then

 T_1 =max(155,max(98+15,106+15,123+15,131+15,139+15))=155,O={3,4,5,6,7,1}, now we need no adjusting the landing time so we obtain, Z=150

P_{i}	3	4	5	6	7	1	2	Z
t _i	98	106	123	131	139	155		150

For the 7th aircraft in the list (P7=2), then

T2=max(258,max(98+15,106+15,123+15,131+15,139+15,155+15))=258,O={3,4,5,6,7,1,2}, now we need no adjusting the landing time so we obtain, Z=150:

P _i	3	4	5	6	7	1	2	Z
t_{i}	98	106	123	131	139	155	258	150

This Table shows the implementation of PIA for this example.

Stage	3	4	5	6	7	1	2	Cost Z
1	98							0
2	98	106						0
3	98	106	123					0
4	98	106	123	135				0
5	98	106	123	131	139			150
6	98	106	118	131	139	155		150
7	98	106	118	131	139	155	258	150

Complete Enumeration Method (CEM)

When using CEM, in sequencing stage we will try all the possible permutation of N planes which equal to N!, while in scheduling stage we will apply two methods:

- Exhaustive Search Method (ESM we try all possibilities starting from E_i ending in L_i . The total number of all possibilities for scheduling is $\prod_{i=1}^{N} (L_i E_i + 1)$
- PIA.

the total complexity (C(N)) for sequencing and scheduling using CEM is:

$$C(N)=N!*\prod_{i=1}^{n}(L_i-E_i+1)$$
 ...(8)

For $E_i=T_i=L_i$, (Z=0) $\forall i \in P$, then C(N)=N!.

Remark: In general, if:

R: the number of pairs of aircraft which are satisfy SR's.

D: the number of pairs of aircraft which are not submitted to SR's, represented by the variables δ_{ii} in matrix A.

R+D= C_2^N =N*(N-1)/2, for the ALP we have 2^D sequences can be try to find the best sequence. In some ALP, N! may be larger than 2^D and vice versa.

	•	•				1
N	C(N)	N!	C_2^N	R	D	2 ^D
8	9.689287×10 ¹⁶	40320	28	17	11	2048*
9	2.486859×10^{20}	362880*	36	17	19	524288
10	1.892271×10^{23}	3628800*	45	23	22	4194304
15	5.084773×10 ⁴¹	1.3077×10 ¹² *	105	44	61	2.305843×10 ¹⁸

Complete Enumeration Method (CEM)

Example: N=3

	P_1	P_2	P ₃
E_{i}	130	127	96
T_{i}	131	128	97
L _i	133	130	99
g_{i}	10	10	30
h _i	10	10	30

		S_{ij}						
	1	2	3					
1	0	4	4					
2	4	0	4					
3	4	4	0					

CEM-ESM

The general Complexity is C(3)=6*64=384. The number of SR=3, R=3 and D=0 so we have the unique sequence π =(3,2,1), then C(3) reduces to 64 possible. Then the best solutions using CEM-ESM are:

- 1 96,127,131, Z=40.
- 2 96,128,132, Z=40.
- 3 97,127,131, Z=10.
- 4 97,128,132, Z=10.

CEM-PIA

we have the unique sequence π =(3,2,1), then the best solution using CEM-PIA is:

1 - 97,127,131, Z=10.

Data Set

Table (1)

	P_1	P_2	P_3
E_{i}	129	195	89
T_{i}	155	258	98
L_{i}	559	744	510
gi	10	10	30
h _i	10	10	30

		S_{ij}							
	1	2	3						
1	0	3	15						
2	3	0	15						
3	15	15	0						

Table(2-1)

	P_1	P_2	P ₃	P_4	P ₅	P_6	P_7	P ₈	P_{9}	P ₁₀
E_{i}	129	195	89	96	110	120	124	126	135	160
T_{i}	155	258	98	106	123	135	138	140	150	180
L_{i}	559	744	510	521	555	576	577	573	591	657
g_{i}	10	10	30	30	30	30	30	30	30	30
h _i	10	10	30	30	30	30	30	30	30	30

Table(2-2)

S_{ii}	1	2	3	4	5	6	7	8	9	10
1	0	3	15	15	15	15	15	15	15	15
2	3	0	15	15	15	15	15	15	15	15
3	15	15	0	8	8	8	8	8	8	8
4	15	15	8	0	8	8	8	8	8	8
5	15	15	8	8	0	8	8	8	8	8
6	15	15	8	8	8	0	8	8	8	8
7	15	15	8	8	8	8	0	8	8	8
8	15	15	8	8	8	8	8	0	8	8
9	15	15	8	8	8	8	8	8	0	-8
10	15	15	8	8	8	8	8	8	8	-0

Exercises

- 1. Calculate the TWT for:
- from Table (1), Z_{UB}=900.
- Table(2-1) and table (2-2), for N=10, for 1st 5 aircraft, Z_{UB}=90.
- 2. Find the SR for N=5

	P_1	P_2	P_3	P_4	P_5
E_{i}	129	111	123	89	96
T_{i}	155	123	135	98	106
L_{i}	191	135	147	110	118
g.	10	30	30	30	30
h _i	10	30	30	30	30

S_{ii}	1	2	3	4	5
1	0	15	15	15	15
2	15	0	8	8	8
3	15	8	0	8	8
4	15	8	8	0	8
5	15	8	8	8	0

	P_1	P_2	P_3	P_4	P_5
E _i	146	241	90	95	108
T_{i}	155	250	93	98	111
L_{i}	164	259	96	101	114
g _i	10	10	30	30	30
h _i	10	10	30	30	30

S_{ii}	1	2	3	4	5
1	0	3	15	15	15
2	3	0	15	15	15
3	15	15	0	8	8
4	15	15	8	0	8
5	15	15	8	8	0

3. Find the priority rules for Exercise (2).

Exercises

4. Apply PIA using T_i priority for N=5

	P_1	P_2	P_3	P_4	P_5
E _i	129	190	84	89	100
T_{i}	155	250	93	98	111
Li	305	400	143	148	161
g_{i}	10	30	30	30	30
h _i	10	30	30	30	30

	P_1	P_2	P_3	P_4	P_5
E_{i}	146	249	95	103	120
T_{i}	155	258	98	106	123
L_{i}	164	267	101	109	126
g_{i}	10	30	30	30	30
h_{i}	10	30	30	30	30

S_{ii}	1	2	3	4	5
1	0	3	15	15	15
2	3	0	15	15	15
3	15	15	0	8	8
4	15	15	8	0	8
5	15	15	8	8	0

S_{ii}	1	2	3	4	5
1	0	3	15	15	15
2	3	0	15	15	15
3	15	15	0	8	8
4	15	15	8	0	8
5	15	15	8	8	0

5. Find C(N), The number of SR, R, D , the possible sequences π , then find the optimal solution for the following ALP using CEM-ESM and CEM-PIA

	P_1	P_2	P_3
E_{i}	130	127	96
T_{i}	131	128	97
L_{i}	132	129	98
g_{i}	10	10	30
h_{i}	10	10	30

	$\mathbf{S}_{ ext{ij}}$				
	1	2	3		
1	0	2	2		
2	2	0	2		
3	2	2	0		

