Logic Design Karnaugh Map

By: Dr. Bassam B. AlKindy

10 March 2020

Lecture Outlines

- What is K-Map?
- Why needs K-Map?
- How to represent K-Map?
- 2-vartiables function
- 3-variables function - example
- 4-variables function -example
-5-variables function - example
- Simplify expressions using K-Maps
- Grouping
- Some Examples
- Quiz

What is K-Map?

- Karnaugh map or shortly K-Map, is a two dimensional graphical representation technique used to simplify the Boolean algebra expressions or from truth tables
- It can be used to written minimal boolean expressions representing the required logic.

Why needs K-Map?

- Simplify using boolean algebra is more complex than using K-Map
- The result expression is perfectly simplified
- Working within SOP and POS
- Unknown truth table case(s) can be considered as don't care (in Next Lecture)

How to represent K-Map?

- 2-Variables function

A two-variable function has four possible minterms. We can re-arrange these minterms into a Karnaugh map.

x	y	minterm
0	0	$x^{\prime} y^{\prime}$
0	1	$x^{\prime} y$
1	0	$x y^{\prime}$
1	1	$x y$

	0	1
$\times 0$	$x^{\prime} y^{\prime}$	$x^{\prime} y$
$\times 1$	$x y^{\prime}$	$x y$

- Now we can easily see which minterms contain common literals.
- Minterms on the left and right sides contain y' and y respectively.
- Minterms in the top and bottom rows contain x^{\prime} and x respectively

How to represent K-Map?

- 3-Variables function
- For a three-variable expression with inputs x, y, z, the arrangement of minterms is more tricky:

		y		
	$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z^{\prime}$
\times	$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z^{\prime}$
	Z			

	yz			
	00	01	11	10
\times	m_{0}	m_{1}	m_{3}	m_{2}
$\times 1$	m_{4}	m_{5}	m_{7}	m_{6}

How to represent K-Map?

- Example of three variables K-Map: given

$$
F(a, b, c)=\sum m(1,2,3,4,5,6)
$$

$$
F=A^{\prime} C+B C^{\prime}+A B^{\prime}
$$

How to represent K-Map?

4-variables function: $F(W, X, Y, Z)$

- Grouping minterms is similar to the three-variable case, but:
We can have rectangular groups of 1, 2, 4, 8 or 16 minterms.

			y		
	$w^{\prime} \times{ }^{\prime} y^{\prime} z^{\prime}$	$w^{\prime} x^{\prime} y^{\prime} z$	w'x'yz	$w^{\prime} \times$ ' $y z^{\prime}$	
	$w^{\prime} \times y^{\prime} z^{\prime}$	$w^{\prime} \times y^{\prime} z$	$w^{\prime} \times y z$	$w^{\prime} \times y z{ }^{\prime}$	X
W	$w \times y^{\prime} z^{\prime}$	$w \times y^{\prime} z$	wxyz	$w \times y z^{\prime}$	X
	$w x^{\prime} y^{\prime} z^{\prime}$	$w x^{\prime} y^{\prime} z$	$w x^{\prime} y z$	$w x^{\prime} y z^{\prime}$	
		Z			

How to represent K-Map?

- Example: simplify the following (SOMs):

$$
F(w, x, y, z)=\Sigma\left(m_{0}, m_{2}, m_{5}, m_{8}, m_{10}, m_{13}\right)
$$

- The expression is already a sum of minterms, so here's the K-map:

		y					
	m_{0}	m_{1}	m_{3}	m_{2}			
	m_{4}	m_{5}	m_{7}	m_{6}	\times		
W	m_{12}	m_{13}	m_{15}	m_{14}			
	m_{8}	m_{9}	m_{11}	m_{10}			
	Z						

Result, $\mathrm{F}=x^{\prime} z^{\prime}+x y^{\prime} z$.

How to represent K-Map?

- 5-variables function
- The \#of locations needed is $2^{n}, n=\# o f$ variables
- $2^{5}=2 \times 2 \times 2 \times 2 \times 2=32$ locations
- We need 2×16 K-Maps for represents these 5 -var.

$$
F(A, B, C, D, E)=\Sigma m(0,2,3,5,7,8,11,13,17,19,23,24,29,30)
$$

[^0]
Simplify expressions using K-Maps

- K-Map uses the following rules for simplifying expressions by grouping the cells containing ONES only.
1.Groups may not include any cell containing a zero.

2.Groups may be horizontal or vertical, but not diagonal.

Simplify expressions using K-Maps

- Groups made using 2^{n} cells only.
- If $n=1$, a group contains two 1^{\prime} s since $2^{1}=2$
- If $n=2$, a group contains four 1 's since $2^{2}=4$

Simplify expressions using K-Maps

4. Each group should be as large as possible.

(Note that no Boolean laws broken, but not sufficiently minimal)
5.Each cell containing a one must be in at least one group.

Simplify expressions using K-Maps

6. Groups may Overlap.

7. there should be as few groups as possible.

Simplify expressions using K-Maps

8. groups may wrap around the table.

- The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell.

Examples:

- Simplify the following expression using: (a) boolean algebra, (b) K-Map.

$$
F(x, y)=x+x y
$$

Sol.
a. Using boolean algebra

$$
\begin{aligned}
F=X+X Y & \rightarrow F=X(1+Y) \quad \text { since }(1+Y)=1 \text { in Boolean Rules } \\
& \rightarrow F=X
\end{aligned}
$$

b. Using K-Map: we need first to get Minterms: Express the function in SOMs:
a. $\mathrm{F}=\mathrm{x}+\mathrm{xy} \rightarrow \mathrm{F}=\mathrm{x} .1+\mathrm{xy}$
$\rightarrow F=x\left(y+y^{\prime}\right)+x y$

$\rightarrow \mathrm{F}=x y+x y^{\prime}+x y$ since $x y+x y=x y$,
$\rightarrow F=x y^{\prime}+x y \rightarrow F(x, y)=\Sigma\left(m_{2}, m_{3}\right)$
Simplified Function $F(x, y)=x$
b. Using Truth Table

x	y	F
0	0	0
0	1	0
1	0	1
1	1	$(1$

Examples:

- Simplify the following expression using KMap in a. SOP, b. POS

$$
F(A, B, C, D)=\Sigma(0,2,3,6,8,9,10,12)
$$

Sol.

$$
F=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B^{\prime} C D^{\prime}+A^{\prime} B^{\prime} C D+A^{\prime} B C D^{\prime}+A B^{\prime} C^{\prime} D^{\prime}+A B^{\prime} C^{\prime} D+A B^{\prime} C D^{\prime}+A B C^{\prime} D^{\prime}
$$

SOP:
$\mathrm{F}=$
POS:
$\mathrm{F}^{\prime}=$
$\mathrm{F}=$

Quiz

- Try yourself to solve this question:
- Simplify the following function's truth table using K-Map in SOP and POS, then draw the SOP circuit?

x	y	z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

End of this Lecture!

Any Questions?

Join our Logic Design google classroom at https://classroom.google.com/u/0/h class join code: upoi4fe

[^0]: $F=B^{\prime} D E+A^{\prime} C^{\prime} D E+A^{\prime} B^{\prime} C^{\prime} E^{\prime}+A^{\prime} B^{\prime} C E+A B^{\prime} C^{\prime} E+B C D^{\prime} E+B C^{\prime} D^{\prime} E^{\prime}+A B C D E^{\prime}$

