

Mustansiriyah University College of Sciences

College of Sciences Department of Computer Science

Logic Design Karnaugh Map

By: Dr. Bassam B. AlKindy 10 March 2020

Lecture Outlines

- What is K-Map?
- Why needs K-Map?
- How to represent K-Map?
 - 2-vartiables function
 - 3-variables function example
 - 4-variables function -example
 - 5-variables function example
- Simplify expressions using K-Maps
 - Grouping
- Some Examples
- Quiz

What is K-Map?

- Karnaugh map or shortly K-Map, is a two dimensional graphical representation technique used to simplify the Boolean algebra expressions or from truth tables
- It can be used to written minimal boolean expressions representing the required logic.

Why needs K-Map?

- Simplify using boolean algebra is more complex than using K-Map
- The result expression is perfectly simplified
- Working within SOP and POS
- Unknown truth table case(s) can be considered as don't care (in Next Lecture)

- > 2-Variables function
- A two-variable function has four possible minterms. We can re-arrange these minterms into a Karnaugh map.

- Now we can easily see which minterms contain common literals.
 - Minterms on the left and right sides contain y' and y respectively.
 - Minterms in the top and bottom rows contain x' and x respectively

		y			
		0	1		
v	0	x'y'	х′у		
^	1	xy'	ху		

 y'
 y

 X'
 x'y'
 x'y

 X
 xy'
 xy

- 3-Variables function
 - For a three-variable expression with inputs x, y, z, the arrangement of minterms is more tricky:

Example of three variables K-Map: given

 $F(a,b,c) = \sum m(1, 2, 3, 4, 5, 6)$

F = A'C + BC' + AB'

- ► 4-variables function: F(W,X,Y,Z)
 - Grouping minterms is similar to the three-variable case, but:
 We can have rectangular groups of 1, 2, 4, 8 or 16

minterms.

				_			3	У		_	
	wxyz	w'x'y'z	w'x'yz	w'x'yz'			mo	m_1	m ₃	m ₂	
	w'xy'z'	w'xy'z	w'xyz	w'xyz'	~		m4	m ₅	m7	m ₆	v
w	wxy'z'	wxy'z	wxyz	wxyz	<u> </u>	14/	m ₁₂	m ₁₃	m ₁₅	m14	^
	wx'y'z'	wx'y'z	wx'yz	wx'yz'		vv	m ₈	m9	m ₁₁	m_{10}	
		Z					Z	2		-	

- Example: simplify the following (SOMs): $F(w,x,y,z)=\Sigma(m_0, m_2, m_5, m_8, m_{10}, m_{13})$
 - The expression is already a sum of minterms, so here's the K-map:

Result, F=x'z' + xy'z.

- 5-variables function
 - The #of locations needed is 2^n , n=#of variables
 - $2^5 = 2x2x2x2x2 = 32$ locations
 - We need 2x16 K-Maps for represents these 5-var.

 $F(A, B, C, D, E) = \Sigma m (0, 2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 24, 29, 30)$

F = B'DE + A'C'DE + A'B'C'E' + A'B'CE + AB'C'E + BCD'E + BC'D'E' + ABCDE'

 K-Map uses the following rules for simplifying expressions by grouping the cells containing ONES only.

- ▶ Groups made using 2ⁿ cells only.
 - If n=1, a group contains two 1's since $2^1=2$
 - If n=2, a group contains four 1's since $2^2=4$

6. Groups may Overlap.

7. there should be as few groups as possible.

- 8. groups may wrap around the table.
 - The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell.

Examples:

 Simplify the following expression using: (a) boolean algebra, (b) K-Map.

$$F(x, y) = x + xy$$

Sol.

a. Using boolean algebra $F=X+XY \rightarrow F=X(1+Y)$ since (1+Y)=1 in Boolean Rules $\Rightarrow F=X$

b. Using K-Map: we need first to get Minterms: Express the function in SOMs:

a.
$$F=x+xy \rightarrow F=x.1+xy$$

 $\rightarrow F=x(y+y')+xy$
 $\rightarrow F=xy+xy'+xy$ since $xy+xy=xy$,
 $\rightarrow F=xy'+xy \rightarrow F(x, y)=\Sigma(m_2, m_3)$

Simplified Function F(x, y) = x

b. Using Truth Table

Examples:

 Simplify the following expression using K-Map in a. SOP, b. POS F(A,B,C,D)=Σ(0, 2, 3, 6, 8, 9,10, 12)

Sol.

F = A'B'C'D' + A'B'CD + A'B'CD + A'BCD' + AB'C'D + AB'C'D + AB'CD' + ABC'D'

 $\mathbf{F} =$

Quiz

Try yourself to solve this question:

 Simplify the following function's truth table using K-Map in SOP and POS, then draw the SOP circuit?

Х	У	Z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

End of this Lecture!

Any Questions?

Join our Logic Design google classroom at <u>https://classroom.google.com/u/0/h</u>

class join code: upoi4fe