Combinational Logic Circuit

Binary Parallel Adder

Two binary numbers of n bits can be added by using binary parallel adder. A binary parallel adder is a digital function that produces the arithmetic sum of to binary numbers in parallel. It consists of full-adders connected in cascade, with the output carry from one full-adder connect to the input carry of the next full-adder.

Q Design a binary parallel adder to add two 4-bit binary numbers?

Ex Design a BCD to Excess 3 code converter?
Sol
Not Used

Ex Design Excess-3 to BCD code converter?

BCD adder

It is a combinational circuit that adds two BCD digits in parallel and produces a sum digit also in BCD. Consider the arithmetic addition of two decimal digits in BCD, together with a possible carry from previous stage. Since each input digit does not exceed 9 , the output sum cannot be greater than $9+9+1=19$, where the 1 in the sum being an input carry.

The BCD adder work as

- Suppose two BCD digits are applied to 4 - bit binary adder.
- The adder will form the sum in binary and produce a result in the range 0 to 19 .
- The binary sum is listed in the first column in the table, where $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{4}, \mathrm{Z}_{8}$ represent the weights $1,2,4,8$ and K is the carry.
- The output sum of two decimal digits must represent in BCD and listed in the second column in the table.
- In second column (BCD sum), where the sum is equal to or less than 1001 , the BCD number is identical, and no conversion is needed.
- When the sum is greater than 1001 . The BCD adder must include the correction logic in its internal construction. The addition of binary $6(0110)$ to binary sum convert it to correct the $B C D$ representation and also produces an output carry.
- From the first column (Binary Sum), the correction is needed when the binary sum has an output carry $K=1$, or when 1 in positions Z_{8} and Z_{4}, or when 1 in positions Z_{8} and Z_{2}.
- The equation is

$$
\mathbf{C}=\mathbf{K}+\mathbf{Z}_{8} \mathbf{Z}_{4}+\mathbf{Z}_{8} \mathbf{Z}_{2}
$$

When the value of $\mathrm{C}=1$ the circuit will add binary $6(0110)$ for correction.

Binary Sum						BCD Sum				
K	Z_{8}	Z_{4}	Z_{2}	Z_{1}	C	S_{8}	$\mathrm{~S}_{4}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

Block - diagram of a BCD adder

The Decoder

A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2^{n} output lines, each output representing one of the minterms of input variables.

Ex Design 3 to 8 decoder?
Sol
The truth table is

X	Y	Z	D 0	D 1	D 2	D 3	D 4	D 5	D 6	D 7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

3 to 8 line decoder

Ex Design BCD to Decimal decoder?
Sol:
The size of the decoder is 4×16 and the truth table is

X	Y	Z	W	D 0	D 1	D 2	D 3	D 4	D 5	D 6	D 7	D 8	D 9
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1

Don't Care

$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$

$$
\mathrm{D}_{0}=\mathrm{XYZW} \quad \mathrm{D}_{1}=\mathrm{XYZW}
$$

$$
\mathrm{D}_{2}=\mathrm{YZW} \quad \mathrm{D}_{3}=\mathrm{YZW}
$$

$$
\mathrm{D}_{4}=\mathrm{YZW} \quad \mathrm{D}_{5}=\mathrm{YZW}
$$

$$
\mathrm{D}_{6}=\mathrm{YZW} \quad \mathrm{D}_{7}=\mathrm{XZW}
$$

$$
\mathrm{D}_{8}=\mathrm{XW}
$$

$$
\mathrm{D}_{9}=\mathrm{Y} Z \mathrm{~W}
$$

Ex Implement the Full- Adder circuit with a Decoder and OR gates?

Sol

From the truth table of a Full-Adder the functions of this combinational circuit in Sum of Minterms
$1-\mathrm{S}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma(1,2,4,7)$
$2-\mathrm{C}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma(3,5,6,7)$
Therefore the number of the inputs in the decoder is $3(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ and the output is 8 , so the size of the decoder (3x8)

The Encoder

An encoder is a digital function produces a reverse operation from that of a decoder. An encoder has 2^{n} inputs lines and n output lines generate the binary code for the 2^{n} input variables.

Ex Design the Octal to Binary Encoder
Sol The truth table is

D0	D1	D2	D3	D4	D5	D6	D7	X	Y	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

D0

Octal to Binary Encoder

Multiplexer

Multiplexer means transmition a large number of information units over a small number of channels or lines. A digital multiplexer is a combinational circuit that selects binary information one of many inputs lines, there are 2^{n} inputs lines and n selection lines.

Ex 4×1 multiplexer, the input lines is $4(2 n)$ and the output is one line and the selection lines is 2 .

4×1 multiplexer logic circuit

Boolean Function Implementation

Boolean function can implemented with a multiplexer by following these steps:
1- the variables in the function applied as $n+1$
$2-\mathrm{n}$ is the number of selection lines.
3- The reminder variables taken as input variable
4- The minterms is applied in a table
5- The inputs applied as 0 and 1 as primed and not primed

Ex Implement the following function with a multiplexer.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma(1,3,5,6)
$$

Sol
1- The variables in the function are 3 so $\mathrm{n}+1=3$
2 - The selection lines are $\mathrm{n}=2$ (B,C)
3- The tired variable A is applied as input to the multiplexer.

	I_{0}	I_{1}	I_{2}	I_{3}
A	0	1	2	3
A	4	5	6	7

4 - The minterms is applied on the table and the block diagram of the multiplexer is drown

H.W.

1- Implement the Boolean function $F=\Sigma(0,1,3,4,8,9,15)$
2 - Implement the following functions using a decoder and OR gates?

$$
\begin{aligned}
& 1-\mathrm{F} 1(\mathrm{~A}, \mathrm{~B})=\mathrm{A}+\mathrm{B} \\
& 2-\mathrm{F} 2(\mathrm{~A}, \mathrm{~B})=\Sigma(0,1) \\
& 3-\mathrm{F} 3(\mathrm{~A}, \mathrm{~B})=\Pi(1,3)
\end{aligned}
$$

Read Only Memory (ROM)

A read only memory (ROM) is a device that includes both the decoder and OR gates with a single IC package. The ROM is a combinational circuit constructed with a decoder and number of OR gates equal to the number of outputs in the unit. ROM consists of $2^{n} x \mathrm{~m}$, where n is the number of inputs lines and m is the number of outputs lines

Ex consider 32 x 4 ROM

Sol

$$
4=\mathrm{m}=\text { outputs lines } \underset{\text { minterm }}{\text { and }} \quad 32=2^{\mathrm{n}}=2^{5} \longrightarrow \mathrm{n}=5=\text { inputs lines }
$$

Logic Construction of 32×4 ROM

Ex Implement the functions using ROM
$\mathrm{F} 1(\mathrm{~A} 1, \mathrm{~A} 0)=\Sigma(1,2,3)$
$\mathrm{F} 2(\mathrm{~A} 1, \mathrm{~A} 0)=\Sigma(0,2)$

Ex Design a combinational circuit using ROM. The circuit accepts a 3-bit number and generates an output binary number equal to the square of the input numbers.

Sol
The truth table is

Input								Output					
A 2	A 1	A 0	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}					
0	0	0	0	0	0	0	0	0					
0	0	1	0	0	0	0	0	1					
0	1	0	0	0	0	1	0	0					
0	1	1	0	0	1	0	0	1					
1	0	0	0	1	0	0	0	0					
1	0	1	0	1	1	0	0	1					
1	1	0	1	0	0	1	0	0					
1	1	1	1	1	0	0	0	1					

In the output D_{0} is equal to A_{0} and D 1 is equal zero therefore the truth table can derived as follow

Input				Output				
A2 A1 A0	D_{5}	D_{4}	D_{3}	D_{2}				
0	0	0	0	0	0	0		
0	0	1	0	0	0	0		
0	1	0	0	0	0	1		
0	1	1	0	0	1	0		
1	0	0	0	1	0	0		
1	0	1	0	1	1	0		
1	1	0	1	0	0	1		
1	1	1	1	1	0	0		

And the block diagram of this ROM

