Combinational Logic Circuit

Binary Parallel Adder

Two binary numbers of n bits can be added by using binary parallel adder. A binary parallel adder is a digital function that produces the arithmetic sum of to binary numbers in parallel. It consists of full-adders connected in cascade, with the output carry from one full-adder connect to the input carry of the next full-adder.

Q Design a binary parallel adder to add two 4-bit binary numbers?

Ex Design a BCD to Excess 3 code converter?

Sol

Ex Design Excess-3 to BCD code converter?

<u>BCD adder</u>

It is a combinational circuit that adds two BCD digits in parallel and produces a sum digit also in BCD. Consider the arithmetic addition of two decimal digits in BCD, together with a possible carry from previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than 9 + 9 + 1 = 19, where the 1 in the sum being an input carry.

The BCD adder work as

- Suppose two BCD digits are applied to 4 bit binary adder.
- The adder will form the sum in binary and produce a result in the range 0 to 19.
- The binary sum is listed in the first column in the table, where Z₁, Z₂, Z₄, Z₈ represent the weights 1, 2, 4, 8 and K is the carry.
- The output sum of two decimal digits must represent in BCD and listed in the second column in the table.
- In second column (BCD sum), where the sum is equal to or less than 1001, the BCD number is identical, and no conversion is needed.
- When the sum is greater than 1001. The BCD adder must include the correction logic in its internal construction. The addition of binary 6 (0110) to binary sum convert it to correct the BCD representation and also produces an output carry.

- From the first column (Binary Sum), the correction is needed when the binary sum has an output carry K=1, or when 1 in positions Z_8 and Z_4 , or when 1 in positions Z_8 and Z_2 .
- The equation is

C = 11 + 120 + 1	C =	K	+	Z 8	\mathbf{Z}_4	+	Z 8	\mathbf{Z}_2
--	------------	---	---	------------	----------------	---	-----	----------------

When the value of C = 1 the circuit will add binary 6 (0110) for correction.

Binary Sum							BCD Sum						
l	K	Z 8	Z_4	Z_2	Z 1	C	S 8	S ₄	S ₂	\mathbf{S}_1			
ľ	0	0	0	0	0	0	0	0	0	0	0		
	0	0	0	0	1	0	0	0	0	1	1		
	0	0	0	1	0	0	0	0	1	0	2		
	0	0	0	1	1	0	0	0	1	1	3		
	0	0	1	0	0	0	0	1	0	0	4		
	0	0	1	0	1	0	0	1	0	1	5		
	0	0	1	1	0	0	0	1	1	0	6		
	0	0	1	1	1	0	0	1	1	1	7		
	0	1	0	0	0	0	1	0	0	0	8		
	0	1	0	0	1	0	1	0	0	1	9		
	0	1	0	1	0	1	0	0	0	0	10		
	0	1	0	1	1	1	0	0	0	1	11		
	0	1	1	0	0	1	0	0	1	0	12		
	0	1	1	0	1	1	0	0	1	1	13		
	0	1	1	1	0	1	0	1	0	0	14		
	0	1	1	1	1	1	0	1	0	1	15		
	1	0	0	0	0	1	0	1	1	0	16		
	1	0	0	0	1	1	0	1	1	1	17		
	1	0	0	1	0	1	1	0	0	0	18		
	1	0	0	1	1	1	1	0	0	1	19		

Block – diagram of a BCD adder

The Decoder

A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2^n output lines, each output representing one of the minterms of input variables.

Ex Design 3 to 8 decoder?

Sol

The truth table is

Х	Y	Ζ	D 0	D1	D2	D3	D4	D5	D6	D7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Ex Design BCD to Decimal decoder?

Sol:

ZW

00

01

11

10

XY

The size of the decoder is 4×16 and the truth table is

Х	Y	Ζ	W		D_0	D1	D2	D3	D4	D5	D6	D7	D8	D9
0	0	0	0		1	0	0	0	0	0	0	0	0	0
0	0	0	1		0	1	0	0	0	0	0	0	0	0
0	0	1	0		0	0	1	0	0	0	0	0	0	0
0	0	1	1		0	0	0	1	0	0	0	0	0	0
0	1	0	0		0	0	0	0	1	0	0	0	0	0
0	1	0	1		0	0	0	0	0	1	0	0	0	0
0	1	1	0		0	0	0	0	0	0	1	0	0	0
0	1	1	1		0	0	0	0	0	0	0	1	0	0
1	0	0	0		0	0	0	0	0	0	0	0	1	0
1	0	0	1		0	0	0	0	0	0	0	0	0	1
1	0	1	1											
1	1	0	0			Do	n't Ca	are						
1	1	0	1											
1	1	1	0											
									D	$0_0 = \mathbf{X}$	YZY	W	D	= X Y Z V
0.0		01		11		10			D	2 = Y	ZW		D3	= Y Z W
D_0		D_1		D ₃		D_2								
D ₄		D5		D ₇		D ₆			D	$A_{4} = Y$	ZW		D ₅	= Y Z W
Х		X		Х		Х			D	$b_6 = Y_6$	ZW		D7	= X Z W
D ₈		D9		Х		X			ח	o _ `	x w		D	$\mathbf{y} = \mathbf{Y} \mathbf{Z} \mathbf{W}$
									D	0 - 1	× 11		Dy	, - 12 11

Ex Implement the Full- Adder circuit with a Decoder and OR gates?

Sol

From the truth table of a Full-Adder the functions of this combinational circuit in Sum of

Minterms

 $1 - S(X, Y, Z) = \Sigma(1, 2, 4, 7)$

 $2 - C(X, Y, Z) = \Sigma(3, 5, 6, 7)$

Therefore the number of the inputs in the decoder is 3 (X, Y, Z) and the output is 8, so the size of the decoder (3 x 8)

The Encoder

An encoder is a digital function produces a reverse operation from that of a decoder. An encoder has 2^n inputs lines and n output lines generate the binary code for the 2^n input variables.

Ex Design the Octal to Binary Encoder

Sol The truth table is

								l		
 D_0	D1	D2	D3	D4	D5	D6	D7	X	Y	Ζ
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Octal to Binary Encoder

<u>Multiplexer</u>

Multiplexer means transmition a large number of information units over a small number of channels or lines. A digital multiplexer is a combinational circuit that selects binary information one of many inputs lines, there are 2^n inputs lines and n selection lines.

Ex 4 x 1 multiplexer, the input lines is 4 (2n) and the output is one line and the selection lines is 2.

Block Diagram

Function Table

4 x 1 multiplexer logic circuit

Boolean Function Implementation

Boolean function can implemented with a multiplexer by following these steps:

- 1- the variables in the function applied as n+1
- 2- n is the number of selection lines.
- 3- The reminder variables taken as input variable
- 4- The minterms is applied in a table
- 5- The inputs applied as 0 and 1 as primed and not primed

Ex Implement the following function with a multiplexer.

 $F(A, B, C) = \Sigma(1, 3, 5, 6)$

Sol

- 1– The variables in the function are 3 so n+1=3
- 2 The selection lines are n = 2 (B,C)
- 3– The tired variable A is applied as input to the multiplexer.

4 – The minterms is applied on the table and the block diagram of the multiplexer is drown

H.W.

- 1- Implement the Boolean function $F = \Sigma (0, 1, 3, 4, 8, 9, 15)$
- 2 Implement the following functions using a decoder and OR gates?
 - 1 F1 (A, B) = A + B2 - F2 (A, B) = Σ (0, 1) 3 - F 3 (A, B) = Π (1, 3)

Read Only Memory (ROM)

A read only memory (ROM) is a device that includes both the decoder and OR gates with a single IC package. The ROM is a combinational circuit constructed with a decoder and number of OR gates equal to the number of outputs in the unit. ROM consists of $2^{n} \times m$, where n is the number of inputs lines and m is the number of outputs lines

Ex consider 32 x 4 ROM

Sol

Logic Construction of 32 x 4 ROM

Ex Implement the functions using ROM

F1 (A1, A0) = Σ (1, 2, 3)

F2 (A1 , A0) = Σ (0, 2)

Ex Design a combinational circuit using ROM. The circuit accepts a 3-bit number and generates an output binary number equal to the square of the input numbers.

Sol

The truth table is

Ι	nput		Output						
A2	2 A1	A0	D ₅	D_4	D ₃	D_2	D_1	D ₀	
0	0	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	1	
0	1	0	0	0	0	1	0	0	
0	1	1	0	0	1	0	0	1	
1	0	0	0	1	0	0	0	0	
1	0	1	0	1	1	0	0	1	
1	1	0	1	0	0	1	0	0	
1	1	1	1	1	0	0	0	1	

In the output D_0 is equal to A_0 and D1 is equal zero therefore the truth table can derived as follow

Ι	nput			0	utpu	It
A2	2 A1	A0	D ₅	D_4	D_3	D_2
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	1
0	1	1	0	0	1	0
1	0	0	0	1	0	0
1	0	1	0	1	1	0
1	1	0	1	0	0	1
1	1	1	1	1	0	0

And the block diagram of this ROM

