Simplification of Boolean Functions

Another method of simplification of Boolean function is Karnaugh - Map (K-Map). This map is a diagram made of squares, each square represent one minterms, and there are several types of K|Map depending on the number of variables in Boolean function.

1-Two - variable K-Map

2 - Three - variable K - Map

Y Z				
x	0	01	11	10
0	M0	M1	M3	M2
	M4	M5	M7	M6

	00	01	11	10
0	$\bar{X} \bar{Y} \bar{Z}$	$\overline{\mathrm{X}} \overline{\mathrm{Y}} \mathrm{Z}$	$\overline{\mathrm{X}} \mathrm{Y} \mathrm{Z}$	$\overline{\mathrm{X}} \mathrm{Y} \overline{\mathrm{Z}}$
1	X $\overline{\mathrm{Y}} \overline{\mathrm{Z}}$	XȲ Z	X Y Z	X Y Z

3 - Four - variable K-Map

| XY |
| :--- | :--- | :--- | :--- | :--- | :--- | $00 \begin{array}{llll}\text { ZW } & 01 & 11 & 10\end{array}$

00				
01				

3 - Five and Six variables K-Map

Ex Simply the following Boolean functions using K -Map?
1- $\mathbf{F}=\overline{\mathbf{X}} \mathbf{Y} \mathbf{Z}+\mathbf{X} \overline{\mathbf{Y}} \overline{\mathbf{Z}}+\mathbf{X} \overline{\mathbf{Y}} \mathbf{Z}+\bar{X} \mathbf{Y} \overline{\mathbf{Z}}$

$F=X \bar{Y}+\bar{X} Y$

If the function is simplified using Boolean- algebra
$F=\bar{X} Y Z+X \bar{Y} \bar{Z}+X \bar{Y} Z+\bar{X} Y \bar{Z}$

$$
\bar{X} Y(Z+\bar{Z})+X \bar{Y}(Z+\bar{Z})=\bar{X} Y+X \bar{Y}
$$

2- $F=\bar{X} Y \mathbf{Z}+X \bar{Y} \bar{Z}+X Y Z+X Y \bar{Z}$

	00	01	11	10
$\times 1$			1	
1	1		1	1

$F=Y Z+X \bar{Z}$
$\mathbf{3}-\mathbf{F}=\overline{\mathbf{A}} \mathbf{C}+\overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}} \mathbf{C}+\mathbf{B} \mathbf{C}$
In this function each term must expressed by all variables in the function ($\mathrm{A}, \mathrm{B}, \mathrm{C}$)
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\overline{\mathrm{A}} \mathrm{C} .1+\overline{\mathrm{A}} \mathrm{B} .1+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\mathrm{B} \mathrm{C} .1$

$$
\begin{aligned}
& =\bar{A} C(B+\bar{B})+\bar{A} B(C+\bar{C})+A \bar{B} C+B C(A+\bar{A}) \\
& =\bar{A} B C+\bar{A} \bar{B} C+\bar{A} B C+\bar{A} B \bar{C}+A \bar{B} C+A B C+\bar{A} B C
\end{aligned}
$$

$=\overline{\mathrm{A}} \mathrm{BC}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\mathrm{ABC}$

$$
\mathrm{F}=\mathrm{C}+\overline{\mathrm{A}} \mathrm{~B}
$$

4- $\mathbf{F}(\mathbf{X}, \mathrm{Y}, \mathrm{Z})=\sum(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{5}, \mathbf{6})$

$$
F(X, Y, Z)=\bar{Z}+X \bar{Y}
$$

$5-\mathbf{F}(\mathbf{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W})=\sum(\mathbf{0}, 1,2,4,5,6,8,9,12,13,14)$

$F(X, Y, Z, W)=\bar{Z}+\bar{X} \bar{W}+Y \bar{W}$

6-F $=\overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}}+\overline{\mathbf{B}} \mathbf{C} \overline{\mathbf{D}}+\overline{\mathbf{A}} \mathbf{B} \mathbf{C} \overline{\mathrm{D}}+\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}}$

$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\overline{\mathrm{B}} \overline{\mathrm{D}}+\overline{\mathrm{B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{C} \overline{\mathrm{D}}$
$7-$ F(A,B,C,D.E $)=\sum(0,2,4,6,9,11,13,15,, 17,21,25,27,29,31)$

	000	001	011	010	110	111	101	100
00	1			1	1			1
01		1	1			1	1	
11		1	1			1	1	
10		1					1	

$\mathbf{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{E}}+\mathrm{BE}+\mathrm{A} \overline{\mathrm{D}} \mathrm{E}$

H.W

Simplify the following functions in sum of product using K-map
1- $\mathrm{F}=\overline{\mathrm{X}} \mathrm{Y}+\mathrm{X} \overline{\mathrm{Y}} \overline{\mathrm{W}}+\mathrm{W}(\overline{\mathrm{X}} \mathrm{Y}+\mathrm{X} \overline{\mathrm{Y}})$
$2-\mathrm{F}=\mathrm{ABD}+\overline{\mathrm{A}} \overline{\mathrm{C}} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{B}+\overline{\mathrm{A}} \mathrm{C} \overline{\mathrm{D}}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{D}}$
$3-\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi(2,3,6,7,8,9,10,11,12,13,14)$

Product of Sum simplification

In previous examples the simplification in Sum of Product form and each minterms represented by 1 (one) in K-map and each missing term in the function is a complement of the function and represented by 0 (zero) in k-map and the simplified expression obtained F (the complement of the function).

Ex simplify the following function in

1 - Sum of products
2 - product of Sums
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,5,8,9,10)$

Sol : 1 - Sum of Products (minterms)

CD				
${ }^{\text {AB }}$	00	01	11	10
	1	1		1
01		1		
11				
10	1	1		1

$$
\mathrm{F}=\overline{\mathrm{B}} \overline{\mathrm{D}}+\overline{\mathrm{B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{C}} \mathrm{D}
$$

2 - Product of Sums

In this case the missing terms is represented by 0 in K -map and simplified to obtained F (complement of the function).

	00	01	11	10
00			0	
01	0		0	0
11	0	0	0	0
10			0	

$$
\overline{\mathrm{F}}=\mathrm{A} B+\mathrm{CD}+\mathrm{B} \overline{\mathrm{D}}
$$

And the basic function

$$
\mathrm{F}=(\overline{\mathrm{A}}+\overline{\mathrm{B}})(\overline{\mathrm{C}}+\overline{\mathrm{D}})(\overline{\mathrm{B}}+\mathrm{D})
$$

Ex Simplify the function F in 1 - Sum of Products 2 - Product of Sums

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Note

If the function in Product of Sums form then the complement of the function must take first and then the 0 is represented in k-map.

Ex: $(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathrm{C})(\mathrm{B}+\mathrm{D})$
The function in Product of Sum form, therefore the complement is take first

$$
\overline{\mathrm{F}}=\mathrm{AB} \overline{\mathrm{C}}+\overline{\mathrm{B}} \overline{\mathrm{D}}
$$

Then these minterms will be assign in the map by 0 because the function is complement.

Ex : Obtained the simplified expression in Product of Sums

$$
\mathrm{F}=(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathrm{D})(\overline{\mathrm{A}}+\overline{\mathrm{D}})(\mathrm{A}+\mathrm{B}+\overline{\mathrm{D}})(\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C}+\mathrm{D})
$$

Sol

$$
\overline{\mathrm{F}}=\mathrm{AB} \overline{\mathrm{D}}+\mathrm{AD}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{D}+\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{C}} \overline{\mathrm{D}}
$$

$\overline{\mathrm{F}}=\mathrm{AB}+\overline{\mathrm{B}} \mathrm{D}+\mathrm{B} \overline{\mathrm{C}} \overline{\mathrm{D}}$
$\mathrm{F}=(\overline{\mathrm{A}}+\overline{\mathrm{B}})(\mathrm{B}+\overline{\mathrm{D}})(\overline{\mathrm{B}}+\mathrm{C}+\mathrm{D})$

Ex Obtain the simplified expression in Product of Sums

H.W.

Obtained the simplified expression of the following functions in 1 - Sum of Products 2 - Product of Sums

$$
\begin{aligned}
& 1-\mathrm{F}=\overline{\mathrm{X}} \overline{\mathrm{Y}}+\overline{\mathrm{Y} \bar{Z}+\mathrm{Y} \overline{\mathrm{Z}}+\mathrm{XYZ}} \\
& 2-\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=\prod(1,3,5,7,13,15) \\
& 3-\mathrm{F}=(\mathrm{A}+\overline{\mathrm{B}}+\mathrm{D})(\overline{\mathrm{A}}+\mathrm{B}+\mathrm{D})(\mathrm{C}+\mathrm{D})(\overline{\mathrm{C}}+\overline{\mathrm{D}})
\end{aligned}
$$

Don't-Care Condition

Sometimes a function table or map contains entries for which it is known:

- The input values for the minterm will never occur, or
- The output value for the minterm is not used

In these cases, the output value need not be defined, Instead, the output value is defined as a "don't care" these values are:

1 - Placing "don't cares" (an "x" entry) in the function table or map,
2 - These values used in simplification with F and \bar{F}.
3 - These values may be not used in simplification.

Ex simplify the Boolean function F in 1 - Sum of Products 2 - Product of Sums
$\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W})=\Sigma(1,3,7,11,15)$
$\mathrm{d}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W})=\Sigma(0,2,5)$

Sol

1-Sum of Products

$$
\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=\mathrm{ZW}+\overline{\mathrm{X}} \overline{\mathrm{Y}}
$$

2 - Product of Sums

$$
\begin{aligned}
& \mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=\overline{\mathrm{W}}+\mathrm{X} \overline{\mathrm{Z}} \\
& \mathrm{~F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=\mathrm{W}(\overline{\mathrm{X}}+\mathrm{Z})
\end{aligned}
$$

Ex Simplify the Boolean function F in 1 - Sum of Products 2 Product of Sums using don't care condition

$$
\begin{aligned}
& \mathbf{F}=\mathbf{A} \mathbf{C} \mathbf{E}+\overline{\mathbf{A}} \mathbf{C} \overline{\mathbf{D}} \overline{\mathbf{E}}+\overline{\mathbf{A}} \overline{\mathbf{C}} \mathbf{D} \mathbf{E} \\
& \mathbf{D}=\mathbf{D} \overline{\mathbf{E}}+\overline{\mathbf{A}} \overline{\mathbf{D}} \mathbf{E}+\mathbf{A} \overline{\mathbf{D}} \overline{\mathbf{E}}
\end{aligned}
$$

Sol

$$
\begin{aligned}
\mathrm{F} & =\mathrm{ACE} \cdot 1+\mathrm{ACDE}+\mathrm{ACD} \mathrm{E} \\
& =\mathrm{ACDE}+\mathrm{AC} \overline{\mathrm{D}} \mathrm{E}+\overline{\mathrm{A}} \mathrm{C} \overline{\mathrm{D}} \overline{\mathrm{E}}+\overline{\mathrm{A}} \overline{\mathrm{C}} \mathrm{DE}
\end{aligned}
$$

$$
\mathrm{D}=\mathrm{D} \overline{\mathrm{E}}(\mathrm{~A}+\overline{\mathrm{A}})+\overline{\mathrm{A}} \overline{\mathrm{D}} \mathrm{E}(\mathrm{C}+\overline{\mathrm{C}})+\mathrm{A} \overline{\mathrm{D}} \overline{\mathrm{E}}(\mathrm{C}+\overline{\mathrm{C}})
$$

$$
=A D \overline{\mathrm{E}}(\mathrm{C}+\overline{\mathrm{C}})+\overline{\mathrm{A}} \mathrm{D} \overline{\mathrm{E}}(\mathrm{C}+\overline{\mathrm{C}})+\overline{\mathrm{A} C} \overline{\mathrm{D}} \mathrm{E}+\overline{\mathrm{A}} \overline{\mathrm{C}} \overline{\mathrm{D} E}+\mathrm{AC} \overline{\mathrm{D}} \overline{\mathrm{E}}
$$ $+\mathrm{A} \overline{\mathrm{C}} \overline{\mathrm{D}} \overline{\mathrm{E}}$

$=A C D \bar{E}+A \bar{C} D \bar{E}+\bar{A} C D \bar{E}+\bar{A} \bar{C} D \bar{E}+\bar{A} C \bar{D} E+\bar{A} \bar{C} \bar{D} E+A C \bar{D} \bar{E}$ $+A \bar{C} \bar{D} \bar{E}$

2 - Product of Sums

1 - Sum of Products

S.O.P
$F(A, C, D, E)=A C+C \bar{E}+\bar{A} \bar{C} D$

$$
\mathrm{F}(\mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E})=(\overline{\mathrm{A}}+\mathrm{C})(\mathrm{C}+\mathrm{D})(\mathrm{A}+\overline{\mathrm{C}}+\overline{\mathrm{D}})
$$

Ex Simplify the Boolean function F in Sum of Products using don't care condition

$$
\begin{aligned}
& \mathrm{F}=\overline{\mathrm{B}} \overline{\mathrm{C}} \overline{\mathrm{D}}+\mathrm{BC} \overline{\mathrm{D}}+\mathrm{AB} \overline{\mathrm{C}} \mathrm{D} \\
& \mathrm{D}=\overline{\mathrm{B}} \mathrm{C} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{C}} \overline{\mathrm{D}}
\end{aligned}
$$

Combinational Logic Circuit

A combinational circuit consist of inputs variables, logic gates and output variables. The logic gates accepts signal from the inputs and generate signal to the output. A block diagram of a combinational circuit is:

Design Procedure

The design procedure involves the following steps:-
1 - The problem is stated.
2 - The number of available input variable and required output variable is determined.
3- The input and output variables are assigned letter symbols.
4 - The truth table that defines the required relationships between inputs and outputs is derived.
5 - The simplified Boolean function for each output is obtained.
6 - The logic diagram is drowning.

The ADDERS

1- Half Adder
It is a combinational circuit that perform the addition of two bits
$0+0=0 \quad 0+1=1 \quad 1+0=1 \quad 1+1=0$ and carry 1
The circuit needs two binary inputs and two binary outputs. The truth table of half adder is:

Input		output	
X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Truth Table

The logic equations $\quad S=\bar{X} Y+X \bar{Y}=X \oplus Y, \quad C=X Y$

The Block Diagram

Logic Circuit

2- Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three inputs bits. It consists of three inputs and two outputs. Two of the inputs variables, X and Y , represent the two bits to be added, the third input Z , represent the carry from the previous step. The two output S (for sum) and C (for carry).

Input			Output	
X	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Block Diagram

Truth Table

To find the logic equations K- map is used

$$
\begin{aligned}
S & =\bar{X} \bar{Y} Z+\bar{X} Y \bar{Z}+X \bar{Y} \bar{Z}+X Y Z \\
& =Z(\bar{X} \bar{Y}+X Y)+\bar{Z}(\bar{X} Y+X \bar{Y}) \\
& =Z(X \bigcirc Y)+\bar{Z}(X \oplus Y) \\
& =Z(\bar{X} \oplus Y)+\bar{Z}(X \oplus Y) \\
& =X \oplus Y \oplus Z
\end{aligned}
$$

$$
C=X Y+X Z+Y Z
$$

The logic curcuit

The Subtractors

1 - Half Subtractor
A half subtractor is combinational circuits that subtract two bits and produce their differences. To perform (X-Y) the truth table is:

Input		output	
X	Y	B	D
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Truth Table

The logic equations

$$
D=\bar{X} Y+X \bar{Y}=X \oplus Y \quad B=\bar{X} Y
$$

The Block Diagram

2 - Full - Subtractor
A full subtractor is a combinational circuit that perform a subtraction between two bits, taking into account that a 1 may have been borrowed. The truth table:

Input			Output	
X	Y	Z	B	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

the block diagram

Truth Table

To find the logic equations K- map is used
$B=\bar{X} Y+\bar{X} Z+Y Z$

$$
\begin{aligned}
& D=X \bar{Y} \bar{Z}+\bar{X} \bar{Y} Z+X Y Z+\bar{X} Y \bar{Z} \\
& =\bar{Z}(X \bar{Y}+\bar{X} Y)+Z(\bar{X} \bar{Y}+X Y) \\
& =\bar{Z}(X \oplus Y)+Z \overline{(X \circ Y)} \\
& =\bar{Z}(X \oplus Y)+Z(X \oplus Y) \\
& =\mathrm{X} \oplus \mathrm{Y} \oplus \mathrm{Z}
\end{aligned}
$$

The logic curuit

Code Conversion

To convert from binary code to another code, a combinational circuit performs this transformation by means of logic gates.

Ex Design a combinational circuit that convert a BCD code to Excess-3 code.

Sol
The truth table consists of 4 inputs and 4 outputs

Input					Output			
A	B	C	D	X	Y	Z	W	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	
1	0	1	0	x	x	x	x	
1	0	1	1	x	x	x	x	
1	1	0	0	x	x	x	x	
1	1	0	1	x	x	x	x	
1	1	1	0	x	x	x	x	
1	1	1	1	x	x	x	x	

$$
\begin{aligned}
Y & =B \bar{C} \bar{D}+\bar{B} D+\bar{B}+C \\
& =B \bar{C} \bar{D}+\bar{B}(D+C)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Z} & =\overline{\mathrm{C}} \overline{\mathrm{D}}+\mathrm{CD} \\
& =\mathrm{C} \bigcirc \mathrm{D}
\end{aligned}
$$

$$
\mathrm{W}=\overline{\mathrm{D}}
$$

The logic curcuit

Ex A combinational circuit has four inputs and one output, the output equal 1 when:
1 - all the inputs are equal to 1 or
2 - non of the inputs are equal to 1 or
3 - an odd number of inputs are equal to 1 .
Design the logic circuit.

Sol

Input			Output	
X	Y	Z	W	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

	0	01	11	
00	1	1		1
01	1		1	
11		1	1	1
10	1		1	

$$
\mathrm{F}=\overline{\mathrm{Y}} \overline{\mathrm{Z}} \overline{\mathrm{~W}}+\overline{\mathrm{X}} \overline{\mathrm{Y}} \overline{\mathrm{~W}}+\overline{\mathrm{X}} \overline{\mathrm{Y}} \overline{\mathrm{Z}}+\mathrm{XZW}
$$

$$
+Y Z W+X Y W+X Y Z+Y \quad Z \quad W
$$

Ex Design a combinational circuit that inputs is three - bit numbers and the output is equal to the squared of the input numbers in binary?

Sol

Ex Design a Full - Adder using two Half - Adder and OR gate, draw the Block diagram and logic circuit?

The block diagram

The logic curcuit

$$
\begin{aligned}
C=C 1+C 2 & =X Y+(X \quad Y) \cdot Z \\
& =X Y+(X \bar{Y}+\bar{X} Y) \cdot Z \\
& =X Y Z+X \bar{Y} Z+\bar{X} Y Z
\end{aligned}
$$

Ex Design Full- Subtractor using two Half - Subtractor and OR gate, draw the Block diagram and logic circuit?

$$
\mathrm{B}=\mathrm{B} 1+\mathrm{B} 2=\overline{\mathrm{X}} \mathrm{Y}+(\overline{\mathrm{X}} \mathrm{Y}) \mathrm{Z}=\overline{\mathrm{X}} \mathrm{Y}+(\overline{\mathrm{X}} \overline{\mathrm{Y}}+\mathrm{XY}) \cdot \mathrm{Z}
$$

$$
=\bar{X} Y+\bar{X} \bar{Y} Z+X Y Z=\bar{X}(Y+\bar{Y} Z)+X Y Z
$$

$$
=\bar{X}(Y+\bar{Y})(Y+Z)+X Y Z
$$

$$
=\bar{X} Y+\bar{X} Z+X Y Z
$$

$$
=Y(\bar{X}+X Z)+\bar{X} Z
$$

$$
=Y(\bar{X}+X)(\bar{X}+Z)+\bar{X} Z
$$

$$
=\bar{X} Y+Y Z+\bar{X} Z
$$

Ex Show that a Full-Subtractor can be obtained from a Full - adder and one inverter?

