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Problem Solving Agent

Problem-solving agent: a type of goal-based

agent

= Decide what to do by finding sequences of
actions that lead to desirable states

Goal formulation: based on current situation

and agent’s performance measure

Problem formulation: deciding what actions
and states to consider, given a goal

The process of looking for such a sequence
of actions is called search
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Example: Romania Touring

On holiday in Romania; currently in Arad

Non-refundable ticket to fly out of Bucharest
tomorrow

Formulate goal (perf. evaluation):
=« be in Bucharest before the flight

Formulate problem:
= states: various cities
= actions: drive between cities

Search:
= Ssequence of cities
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Road Map of Romania
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Problem-Solving Agents

function SIMPLE-PROBLEM-SOLVING-AGENT( percept ) returns an action
persistent: geq. an action sequence. mitially empty
state, some description of the current world state
goal, a goal. initially null
problem. a problem formulation

state «+—— UPDATE-STATE(slale, percept )
if seq 1s empty then
goal — FORMULATE-GOAL( state)
problem — FORMULATE-PROBLEM( state, goal)
seq — SEARCH( problem)
if seq = failure then return a null action
action +— FIRST(seq)
seq— REST(seq)
return action
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Aspects of the Simple Problem Solver

Where does it fit into the agents and
environments discussion?

= Static environment

= Observable

= Discrete

= Deterministic

= Open-loop system: percepts are ignored, thus
break the loop between agent and environment
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Well-Defined Problems

A problem can be defined formally by five
components:

« Initial state

= Actions

« Transition model: description of what each action
does (successor)

Goal test
Path cost
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Problem Formulation — 5 Components

Initial state: In(Arad)

Actions, if current state is In(Arad), actions = {Go{Sibiu),
Go(Timisoara), Go(Zerind)}

Transition model:

= e.g., Results(In(Arad), Go(Sibiu)) = In(Sibiu)

Goal test determines whether a given state is a goal state
= explicit, e.g. In(Bucharest)
« implicit, e.g. checkmate

Path cost function that assigns a numeric cost to each path
= e.g., distance traveled
= step cost: c(x, a, y)

Solution: a path from the initial state to a goal state

Optimal solution: the path that has the lowest path cost among all
solutions; measured by the path cost function
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Problem Abstraction

Real world is complex and has more details

Irrelevant details should be removed from state
space and actions, which is called abstraction

What's the appropriate level of abstraction?

=« the abstraction is valid, if we can expand it into a solution
in the more detailed world

« the abstraction is useful, if carrying out the actions in the
solution is easier than the original problem

= remove as much detail as possible while retaining validity
and usefulness
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Example: Vacuum-Cleaner

States

= 8 states A @ B
Initial state

= any state 9588 0588
Actions

« Left, Right, and Suck

Transition model
= complete state space, see next page

Goal test
= whether both squares are clean

Path cost
= each step costs 1
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Complete State Space

G‘ij : 2 (a0
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Example: 8-puzzle

71l 2 || 4 1 2
5 6 31| 41| 5 NP-Complete
8 ||| 3| 1 6 (|| 7 || 8

Start State Goal State

States:

= location of each tile and the blank
[nitial state: any, 91/2
Actions:

= blank moves Left, Right, Up or Down

Transition model:
= Given a state and action, returns the resulting state

Goal test: Goal configuration
Path cost: Each step costs 1
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Example: Robotic Assembly

i} -~

oy %

States

« real-valued coordinates of robot joint angles; parts of the
object to be assembled

Actions
= continuous motions of robot joints

Transition model
= States of robot joints after each action

Goal test
= complete assembly

Path cost: time to execute
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Missionaries & Cannibals

3 missionaries and 3 cannibals need to cross a river
1 boat that can carry 1 or 2 people

Find a way to get everyone to the other side, without ever
leaving the group of missionaries in one place outnumbered by
cannibals in that place

Check on this link:
s http://www.learn4good.com/games/puzzle/boat.htm
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Problem Formulation

States:

= <m, ¢, b> representing the # of missionaries and the # of
cannibals, and the position of the boat

Initial state:
m <3, 3, 1>
Actions:

=« take 1 missionary, 1 cannibal, 2 missionaries, 2 cannibals,
or 1 missionary and 1 cannibal across the river

Transition model:
= State after an action

Goal test:

= <0,0, 0>

Path cost:

= humber of crossing
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Real-World Problems

Touring problem: visit every city at least
once, starting and ending in Bucharest

Traveling sales problem: exactly once
Robot navigation

Internet searching: software robots
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Searching for Solutions

? ?
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Searching for Solutions

Search tree: generated by initial state and
possible actions

Basic idea:

« Offline, simulated exploration of state space by
generating successors of already-explored states
(expanding states)

» the choice of which state to expand is determined
by search strategy
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Tree Search Example
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Tree Search Example

CS 420: Artificial Intelligence

21



Tree Search Example

< Sibiu_

imiscara

CArad D (Fagaras> (Qradea > Ernia o)

CS 420: Artificial Intelligence

22



Terminologies

Frontier: set of all leaf nodes available for
expansion at any given point

Repeated state
_oopy path: Arad to Sibiu to Arad

Redundant path: more than one way to get
from one state to another

Sometimes, redundant paths are
unavoidable

=« Sliding-block puzzle
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General Tree Search Algorithm

function TREE-SEARCH( problem) returns a solution. or failure
initialize the frontier using the mitial state of problem
loop do

if the frontier 1s empty then return failure
choose a leat node and remove 1t from the frontier

if the node contains a goal state then return the comresponding solution
expand the chosen node. adding the resulting nodes to the frontier
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Avoiding Repeated States

Failure to detect repeated states can turn a linear
problem into an exponential one!

Algorithms that forget their history are doomed to
repeat it

state space size: d + 1 - search tree leaves: 2d
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General Graph Search Algorithm

function GRAPH-SEARCH( problem ) returns a solution, or failure

initialize the frontier using the mitial state of problem

initialize the explored set to be empty

loop do
if the frontier 1s empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node. adding the resulting nodes to the frontier

enly if not in the frontier or explored set

We augment Tree-Search with a explored
set, which remembers every expanded node
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Graph Search Examples
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Figure 3.9 FILES: figures/graph-separation.eps. The separation property of GRAPH-SEARCH.
illustrated on a rectangular-gnid problem. The frontier (white nodes) always separates the explored
region of the state space (black nodes) from the unexplored region (gray nodes). In (a). just the root has
been expanded. In (b). one leaf node has been expanded. In (c¢). the remaiming successors of the root
have been expanded in clockwise order.
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Implementation: States vs. Nodes

A state is a representation of a physical configuration

A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(n), depth

A solution path can be easily extracted

PARENT

5 4 Node ACTION = Right

PATH-COST=06

STATE
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CHILD-NODE Function

The CHILD-NODE function takes a parent

node and an action and returns the resulting
child node

function CHILD-NODE(problem, parent, action) returns a node
return a node with

STATE = problem.RESULT(parent.STATE, action)

PARENT = parent

ACTION = action

PATH-COST = parent.PATH-COST +
problem.STEP-COST(parent.STATE, action)
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Frontier and Explored Set

Goal of frontier: the next node to expand
can be easily located in the frontier

Possible data structures?

Goal of explored set: efficient checking for
repeated states

Possible data structures?
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Search Strategies

A search strategy is defined by picking the order of node
expansion

Strategies are evaluated along the following dimensions:
« completeness: does it always find a solution if one exists?
« optimality: does it always find a least-cost solution?

« time complexity: number of nodes generated
= Space complexity: maximum number of nodes in memory

Time and space complexity are measured in terms of
« b: maximum branching factor of the search tree
« d: depth of the least-cost solution
= m: maximum depth of the state space (may be o)

Search cost (time), total cost (time+space)
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Uninformed Search Strategies

Uninformed search (blind search) strategies use
only the information available in the problem
definition

Strategies that know whether one non-goal state is
better than another are called informed search or
heuristic search

General uninformed search strategies:
Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search
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Breadth-First Search

Expand shallowest unexpanded node

Implementation:

= Frontier is a FIFO queue, i.e., nhew successors go
at end

>
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Breadth-First Search

Expand shallowest unexpanded node

Implementation:

= Frontier is a FIFO queue, i.e., nhew successors go
at end

(4,
40 O
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Breadth-First Search

Expand shallowest unexpanded node

Implementation:

= Frontier is a FIFO queue, i.e., nhew successors go
at end
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Breadth-First Search

Expand shallowest unexpanded node

Implementation:

= Frontier is a FIFO queue, i.e., nhew successors go
at end
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BFS on a Graph

function BREADTH-FIRST-SEARCH( problem) returns a solution, or failure

node «— a node with STATE = problem INITIAL-STATE. PATH-COST=10
if problem . GOAL-TEST(node.STATE) then return SOLUTION( node)
frontier — a FIFO queue with node as the only element
explored — an empty set
loop do
if EMPTY?( frontier) then return failure
node — POP( frontier) /* chooses the shallowest node i frontier */
add node.STATE to explored
for each action in problem . ACTIONS(node.STATE) do
child — CHILD-NODE( problem. node. action)
if child STATE 1s not mn explored or frontier then
if problem.GOAL-TEST( child . STATE) then return SOLUTION({ child)
frontier «— INSERT( child. frontier)
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Analysis of Breadth-First Search

Complete?

= Yes (if b is finite), the shallowest solution is returned
Time?

= b+b2+b3+... +b? = O(b9)

Space?

= O (b9 (keeps every node in memory)

Optimal?

= Yes if step costs are all identical or path cost is a
nondecreasing function of the depth of the node

Space is the bigger problem (more than time)
Time requirement is still a major factor
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How Bad is BFS?

With b = 10; 1 million nodes/sec; 1k bytes/node

It takes 13 days for the solution to a problem with
search depth 12, nodes 1012

350 years at depth 16

Memory is more of a problem than time
= Requires 103G whend =8

Exponential-complexity search problems cannot be
solved by uninformed methods for any but the
smallest instances
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Uniform-Cost Search

Expand least-cost unexpanded node

Implementation:
= Frontier = priority queue ordered by path cost g(n)

Example, shown on board, from Sibiu to Bucharest

breadth-first = uniform-cost search when?
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Uniform-Cost Search

function UNIFORM-COST-SEARCH( problem ) returns a solution. or failure

node «— a node with STATE = problem INITIAL-STATE. PATH-COST=10
frontier — a prionty queue ordered by PATH-COST. with node as the only element

explored «— an empty set
loop do
if EMPTY?( frontier) then return failure
node «— POP( frontier) /* chooses the lowest-cost node in frontier */
if problem.GOAL-TEST(node. STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem ACTIONS(node. STATE) do
child — CHILD-NODE( problem. node. action)
if child STATE 1s not in explored or frontier then
frontier «— INSERT( child. frontier)
else if child.STATE 1s 1in frontier with higher PATH-COST then
replace that frontier node with child
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Analysis

Complete?
= Yes, if step cost = €

Time?
= O (b celing(C*/ €)) where C * is the cost of the optimal solution
= # of nodes with g < cost of optimal solution

Space?
= O (b ceiling(C*/ s))

= # of nodes with g < cost of optimal solution

Optimal?
= Yes — nodes expanded in increasing order of g(n)
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Uniform-Cost Search is Optimal

Uniform-cost search expands nodes in order
of their optimal path cost

Hence, the first goal node selected for
expansion must be the optimal solution
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Depth-First Search

Expand deepest unexpanded node

Implementation:
= frontier = LIFO queue, i.e., put successors at front
= Or a recursive function

()
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Depth-First Search

Expand deepest unexpanded node

Implementation:
= frontier = LIFO queue, i.e., put successors at front
= Or a recursive function

L, (5
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Depth-First Search
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Depth-First Search

Expand deepest unexpanded node
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Depth-First Search

Expand deepest unexpanded node

Implementation:
= frontier = LIFO queue, i.e., put successors at front
= Or a recursive function
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Properties of DFS

Properties of DFS depend strongly on
whether the graph-search or tree-search
version is used

CS 420: Artificial Intelligence

53



Analysis of DFS + Tree Search

Complete?
= No: fails in infinite-depth spaces, or spaces with loops
= Modify to avoid repeated states along path
- complete in finite spaces
Time?
= O (b™M): terrible if m is much larger than d

= but if solutions are dense, may be much faster than
breadth-first

Space?

= O (bm), i.e., linear space!
Optimal?

= NO
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Analysis of DFS + Graph Search

Complete?

= No: also fails in infinite-depth spaces

= Yes: for finite state spaces

Time?

= O (b™M): terrible if m is much larger than d

= but if solutions are dense, may be much faster than
breadth-first

Space?
= Not linear any more, because of explored set

Optimal?
= NO
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Backtracking Search

Backtracking search is a variant of DFS

= Only one successor is generated at a time rather
than all successors

« Each partially expanded node remembers which
successor to generate next

= Memory requirement: O(m) vs. O(bm)
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Depth-Limited Search

Is the same as depth-first search with depth limit /, nodes
at depth [/ are treated as if they have no successors

function DEPTH-LIMITED-SEARCH( problem. limit) returns a solution. or failure/cutoft
return RECURSIVE-DLS(MAKE-NODE({ problem.INITIAL-STATE). problem. limit)

function RECURSIVE-DLS(node. problem. limit) returns a solution. or failure/cutoff
if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
else if limmift = 0 then return cutoff
else
cutofl_occurred? «— false
for each action in problem ACTIONS(node. STATE) do
child — CHILD-NODE( problem., node. action)
result «— RECURSIVE-DLS(child, problem. limit — 1)
if result = cutoff then cutoff_occurred? — true
else if result & failure then return resuli
if cutoff_occurred? then return cutoff else return failure

Complete? Time? Space? Optimal?
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Iterative Deepening DF-Search

Gradually increase the depth limit until a goal is
found

Combines the benefits of depth-first and breadth-
first search

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result +— DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result
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Depth Limit = 0

Limit =0 +(2) ®
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Depth Limit = 1

Limit=1 D (@)
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Depth Limit = 2

Limit =2 +(2)
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Depth Limit = 3

Limit =3 )
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Analysis of Iterative Deepening Search

Number of nodesfgenerated in @ depth-limited search to depth
d with branching factor b:

Npis=b°+bl+b?+... +b%*2+pdl+pd

Number of nodes generated in an iterative deepening search
to depth d with branching factor b:

Nips = (d+1)b° + d b? + (d-1)b2 + ... + 3b9-2 +2pd-1 + pd

For b = 10, d = 5,
= Nps=1+ 10+ 100 + 1,000 + 10,000 + 100,000
= Nps =6+ 50+ 400 + 3,000 + 20,000 + 100,000

111,111
123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

IDS is the preferred uninformed search method when search
space is large and depth of solution is unknown
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Analysis, Continue

Complete?

= Yes

Time?

= (d+1)b% + d bl + (d-1)b2 + ... + b9 = O(b9)
Space?

« O(bd) (tree search version)

Optimal?

= Yes, if step costs are identical or path cost is a
nondecreasing function of the depth of the node
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Summary of Uninformed Tree
Search Strategies

Criterion Breadth-  Uniform- Depth-  Depth- lterative
First Cost First Limited  Deepening
Complete? Yes Yes No No Yes
Time oY) Oo@®Blcey  o@wm) O(b) O(b?)
Space OB+t oW /)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

Complete and optimal under certain
conditions

Discussion on bidirectional search
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Analysis of Graph Search

Much more efficient than Tree-Search

Time and space are proportional to the size of the
state space

Optimality:
= uniform-cost search or breadth-first search with identical

step costs are still optimal even if it returns the first path
found

= iterative-deepening, identical step cost or non-decreasing
function of depth of a node

Tradeoff: depth-first or iterative deepening are not
linear anymore
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Bidirectional Search

Runs two simultaneous searches
= Forward from initial state
« Backward from goal state
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Searching With Partial Information

We have covered: Deterministic, fully observable - single-
state problem

= agent knows exactly which state it will be in
= Solution is a sequence

Deterministic, non-observable - multi-state problem
= Also called sensorless problems (conformant problems)
= agent may have no idea where it is
= solution is a sequence

Nondeterministic and/or partially observable - contingency
problem

=« percepts provide new information about current state
= often interleave search, execution
= solution is a tree or policy
Unknown state space - exploration problem (“online”)
« states and actions of the environment are unknown
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Example: Vacuum World

Single-state, start in
#5. Solution?
= [Right, Suck]

Multi-state, start in
#[1, 2, ..., 8].
Solution?

= [Right, Suck, Left, Suck]
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Contingency Problem

Contingency, start in #5

& 7.

= Nondeterministic: suck
may dirty a clean carpet

=« local sensing: dirt,
location only at current
location

= Solution?

=« Percept: [Left, Clean] =
[Right, if dirty then Suck]

CS 420: Artificial Intelligence

1

7

IRk N

A (BR[| A (2

71




Summary

We have covered methods for selecting actions in
environments that are deterministic, observable,
static, and completely known

Problem formulation requires abstraction

Uninformed search strategies
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Announcement

Now, in-class exercises
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Question 1

Define the following items:
» State, state space, search tree

Does a finite state space always lead to a
finite search tree?

How about a finite state space that is a tree
or a finite directed acyclic graph?
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Question 2

Give a complete problem formulation for
each of the following.

= You have to color a planar map using only four
colors, in such a way that no two adjacent
regions have the same color.

=« A 3-foot-tall monkey is in a room where some
bananas are suspended from the 8-foot ceiling.
He would like to get the bananas. The room
contains two stackable, movable, climable 3-foot-
high crates.
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Question 3

Consider a state space where the start state
is number 1 and the successor function for
state n returns two states, numbers 2n and
2n+1

= Draw the portion of the state space from 1 to 15

= Suppose the goal state is 11. List the order in
which nodes will be visited for BFS, DLS with
limit 3, and IDS.

= How well would bidirectional search work on this
problem?
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Question 4

Prove that uniform-cost search and BFS with
constant step costs are optimal when used
with the Graph-Search algorithm.

Show a state space with varying step costs
in which Graph-Search using iterative
deepening finds a suboptimal solution.
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Question 5

Describe a state space in which iterative
deepening search performs much worse
than depth-first search (for example, O(n?)

vs. O(n)).
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Question 6

Use uniform-cost search implemented with
the graph search algorithm to find a route
from Arad to Bucharest.
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