
Chapter 3: 
Solving Problems by Searching



CS 420: Artificial Intelligence 2

Problem Solving Agent

 Problem-solving agent: a type of goal-based 
agent
 Decide what to do by finding sequences of 

actions that lead to desirable states

 Goal formulation: based on current situation 
and agent’s performance measure

 Problem formulation: deciding what actions 
and states to consider, given a goal

 The process of looking for such a sequence 
of actions is called search



CS 420: Artificial Intelligence 3



CS 420: Artificial Intelligence 4

Example: Romania Touring
 On holiday in Romania; currently in Arad
 Non-refundable ticket to fly out of Bucharest 

tomorrow
 Formulate goal (perf. evaluation): 

 be in Bucharest before the flight
 Formulate problem:

 states: various cities
 actions: drive between cities

 Search:
 sequence of cities 



CS 420: Artificial Intelligence 5

Road Map of Romania



CS 420: Artificial Intelligence 6

Problem-Solving Agents



CS 420: Artificial Intelligence 7

Aspects of the Simple Problem Solver

 Where does it fit into the agents and 
environments discussion?
 Static environment
 Observable
 Discrete
 Deterministic
 Open-loop system: percepts are ignored, thus 

break the loop between agent and environment



Well-Defined Problems

 A problem can be defined formally by five 
components:
 Initial state 
 Actions
 Transition model: description of what each action 

does (successor)
 Goal test
 Path cost

CS 420: Artificial Intelligence 8



CS 420: Artificial Intelligence 9

Problem Formulation – 5 Components
 Initial state: In(Arad)
 Actions, if current state is In(Arad), actions = {Go{Sibiu), 

Go(Timisoara), Go(Zerind)}
 Transition model: 

 e.g., Results(In(Arad), Go(Sibiu)) = In(Sibiu)

 Goal test determines whether a given state is a goal state
 explicit, e.g. In(Bucharest)
 implicit, e.g. checkmate

 Path cost function that assigns a numeric cost to each path
 e.g., distance traveled
 step cost: c(x, a, y)

 Solution: a path from the initial state to a goal state
 Optimal solution: the path that has the lowest path cost among all 

solutions; measured by the path cost function



CS 420: Artificial Intelligence 10

Problem Abstraction
 Real world is complex and has more details
 Irrelevant details should be removed from state 

space and actions, which is called abstraction
 What’s the appropriate level of abstraction?

 the abstraction is valid, if we can expand it into a solution 
in the more detailed world

 the abstraction is useful, if carrying out the actions in the 
solution is easier than the original problem

 remove as much detail as possible while retaining validity 
and usefulness



CS 420: Artificial Intelligence 11

Example: Vacuum-Cleaner
 States

 8 states

 Initial state
 any state

 Actions
 Left, Right, and Suck

 Transition model
 complete state space, see next page

 Goal test
 whether both squares are clean

 Path cost
 each step costs 1



CS 420: Artificial Intelligence 12

Complete State Space 



CS 420: Artificial Intelligence 13

Example: 8-puzzle

 States:
 location of each tile and the blank

 Initial state: any, 9!/2
 Actions:

 blank moves Left, Right, Up or Down
 Transition model:

 Given a state and action, returns the resulting state
 Goal test: Goal configuration
 Path cost: Each step costs 1

NP-Complete



CS 420: Artificial Intelligence 14

Example: Robotic Assembly

 States
 real-valued coordinates of robot joint angles; parts of the 

object to be assembled
 Actions

 continuous motions of robot joints
 Transition model

 States of robot joints after each action
 Goal test

 complete assembly
 Path cost: time to execute



CS 420: Artificial Intelligence 15

Missionaries & Cannibals
 3 missionaries and 3 cannibals need to cross a river
 1 boat that can carry 1 or 2 people
 Find a way to get everyone to the other side, without ever 

leaving the group of missionaries in one place outnumbered by 
cannibals in that place

 Check on this link:
 http://www.learn4good.com/games/puzzle/boat.htm



CS 420: Artificial Intelligence 16

Problem Formulation
 States: 

 <m, c, b> representing the # of missionaries and the # of 
cannibals, and the position of the boat

 Initial state: 
 <3, 3, 1>

 Actions: 
 take 1 missionary, 1 cannibal, 2 missionaries, 2 cannibals, 

or 1 missionary and 1 cannibal across the river

 Transition model:
 state after an action

 Goal test:
 <0, 0, 0>

 Path cost:
 number of crossing



CS 420: Artificial Intelligence 17

Real-World Problems

 Touring problem: visit every city at least 
once, starting and ending in Bucharest

 Traveling sales problem: exactly once
 Robot navigation
 Internet searching: software robots



CS 420: Artificial Intelligence 18

Searching for Solutions

?

?
? ?

?

?



CS 420: Artificial Intelligence 19

Searching for Solutions
 Search tree: generated by initial state and 

possible actions

 Basic idea: 
 offline, simulated exploration of state space by 

generating successors of already-explored states 
(expanding states)

 the choice of which state to expand is determined 
by search strategy



CS 420: Artificial Intelligence 20

Tree Search Example



CS 420: Artificial Intelligence 21

Tree Search Example



CS 420: Artificial Intelligence 22

Tree Search Example



Terminologies
 Frontier: set of all leaf nodes available for 

expansion at any given point
 Repeated state
 Loopy path: Arad to Sibiu to Arad
 Redundant path: more than one way to get 

from one state to another 

 Sometimes, redundant paths are 
unavoidable
 Sliding-block puzzle

CS 420: Artificial Intelligence 23



General Tree Search Algorithm

CS 420: Artificial Intelligence 24



CS 420: Artificial Intelligence 25

Avoiding Repeated States
 Failure to detect repeated states can turn a linear 

problem into an exponential one!
 Algorithms that forget their history are doomed to 

repeat it

state space size: d + 1  search tree leaves: 2d



CS 420: Artificial Intelligence 26

General Graph Search Algorithm

We augment Tree-Search with a explored 
set, which remembers every expanded node



Graph Search Examples

CS 420: Artificial Intelligence 27



CS 420: Artificial Intelligence 28

Implementation: States vs. Nodes
 A state is a representation of a physical configuration

 A node is a data structure constituting part of a search tree 
includes state, parent node, action, path cost g(n), depth

 A solution path can be easily extracted



CHILD-NODE Function

 The CHILD-NODE function takes a parent 
node and an action and returns the resulting 
child node

function CHILD-NODE(problem, parent, action) returns a node
return a node with

STATE = problem.RESULT(parent.STATE, action)
PARENT = parent
ACTION = action
PATH-COST = parent.PATH-COST + 

problem.STEP-COST(parent.STATE, action)

CS 420: Artificial Intelligence 29



Frontier and Explored Set

 Goal of frontier: the next node to expand 
can be easily located in the frontier

 Possible data structures?

 Goal of explored set: efficient checking for 
repeated states

 Possible data structures?

CS 420: Artificial Intelligence 30



CS 420: Artificial Intelligence 31

Search Strategies
 A search strategy is defined by picking the order of node 

expansion

 Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution if one exists?
 optimality: does it always find a least-cost solution?
 time complexity: number of nodes generated
 space complexity: maximum number of nodes in memory

 Time and space complexity are measured in terms of 
 b: maximum branching factor of the search tree
 d: depth of the least-cost solution
 m: maximum depth of the state space (may be ∞)

 Search cost (time), total cost (time+space)



CS 420: Artificial Intelligence 32

Uninformed Search Strategies
 Uninformed search (blind search) strategies use 

only the information available in the problem 
definition

 Strategies that know whether one non-goal state is 
better than another are called informed search or 
heuristic search

 General uninformed search strategies:
 Breadth-first search
 Uniform-cost search
 Depth-first search
 Depth-limited search
 Iterative deepening search



CS 420: Artificial Intelligence 33

Breadth-First Search

 Expand shallowest unexpanded node
 Implementation:

 Frontier is a FIFO queue, i.e., new successors go 
at end



CS 420: Artificial Intelligence 34

Breadth-First Search

 Expand shallowest unexpanded node
 Implementation:

 Frontier is a FIFO queue, i.e., new successors go 
at end



CS 420: Artificial Intelligence 35

Breadth-First Search

 Expand shallowest unexpanded node
 Implementation:

 Frontier is a FIFO queue, i.e., new successors go 
at end



CS 420: Artificial Intelligence 36

Breadth-First Search

 Expand shallowest unexpanded node
 Implementation:

 Frontier is a FIFO queue, i.e., new successors go 
at end



BFS on a Graph

CS 420: Artificial Intelligence 37



CS 420: Artificial Intelligence 38

Analysis of Breadth-First Search
 Complete?

 Yes (if b is finite), the shallowest solution is returned

 Time?
 b+b2+b3+… +bd = O(bd)

 Space?
 O (bd) (keeps every node in memory)

 Optimal?
 Yes if step costs are all identical or path cost is a 

nondecreasing function of the depth of the node

 Space is the bigger problem (more than time)
 Time requirement is still a major factor



How Bad is BFS?
 With b = 10; 1 million nodes/sec; 1k bytes/node
 It takes 13 days for the solution to a problem with 

search depth 12, nodes 1012

 350 years at depth 16

 Memory is more of a problem than time
 Requires 103G when d = 8

 Exponential-complexity search problems cannot be 
solved by uninformed methods for any but the 
smallest instances

CS 420: Artificial Intelligence 39



CS 420: Artificial Intelligence 40

Uniform-Cost Search
 Expand least-cost unexpanded node
 Implementation:

 Frontier = priority queue ordered by path cost g(n)

 Example, shown on board, from Sibiu to Bucharest

 breadth-first = uniform-cost search when?



Uniform-Cost Search

CS 420: Artificial Intelligence 41



Analysis
 Complete?

 Yes, if step cost ≥ ε

 Time?
 O (b ceiling(C*/ ε)) where C * is the cost of the optimal solution
 # of nodes with g ≤ cost of optimal solution

 Space?
 O (b ceiling(C*/ ε))
 # of nodes with g ≤ cost of optimal solution

 Optimal?
 Yes – nodes expanded in increasing order of g(n)

CS 420: Artificial Intelligence 42



Uniform-Cost Search is Optimal

 Uniform-cost search expands nodes in order 
of their optimal path cost

 Hence, the first goal node selected for 
expansion must be the optimal solution

CS 420: Artificial Intelligence 43



CS 420: Artificial Intelligence 44

Depth-First Search
 Expand deepest unexpanded node
 Implementation:

 frontier = LIFO queue, i.e., put successors at front
 Or a recursive function



CS 420: Artificial Intelligence 45

Depth-First Search
 Expand deepest unexpanded node
 Implementation:

 frontier = LIFO queue, i.e., put successors at front
 Or a recursive function



CS 420: Artificial Intelligence 46

Depth-First Search
 Expand deepest unexpanded node
 Implementation:

 frontier = LIFO queue, i.e., put successors at front
 Or a recursive function



CS 420: Artificial Intelligence 47

Depth-First Search
 Expand deepest unexpanded node
 Implementation:

 frontier = LIFO queue, i.e., put successors at front
 Or a recursive function



CS 420: Artificial Intelligence 48

Depth-First Search
 Expand deepest unexpanded node
 Implementation:

 frontier = LIFO queue, i.e., put successors at front
 Or a recursive function



CS 420: Artificial Intelligence 49

Depth-First Search
 Expand deepest unexpanded node
 Implementation:

 frontier = LIFO queue, i.e., put successors at front
 Or a recursive function



CS 420: Artificial Intelligence 50

Depth-First Search
 Expand deepest unexpanded node
 Implementation:

 frontier = LIFO queue, i.e., put successors at front
 Or a recursive function



CS 420: Artificial Intelligence 51

Depth-First Search
 Expand deepest unexpanded node
 Implementation:

 frontier = LIFO queue, i.e., put successors at front
 Or a recursive function



CS 420: Artificial Intelligence 52

Depth-First Search
 Expand deepest unexpanded node
 Implementation:

 frontier = LIFO queue, i.e., put successors at front
 Or a recursive function



Properties of DFS

 Properties of DFS depend strongly on 
whether the graph-search or tree-search 
version is used

CS 420: Artificial Intelligence 53



CS 420: Artificial Intelligence 54

Analysis of DFS + Tree Search
 Complete?

 No: fails in infinite-depth spaces, or spaces with loops
 Modify to avoid repeated states along path

 complete in finite spaces

 Time?
 O (bm): terrible if m is much larger than d
 but if solutions are dense, may be much faster than 

breadth-first

 Space?
 O (bm), i.e., linear space!

 Optimal?
 No



Analysis of DFS + Graph Search
 Complete?

 No: also fails in infinite-depth spaces
 Yes: for finite state spaces

 Time?
 O (bm): terrible if m is much larger than d
 but if solutions are dense, may be much faster than 

breadth-first

 Space?
 Not linear any more, because of explored set

 Optimal?
 No

CS 420: Artificial Intelligence 55



Backtracking Search

 Backtracking search is a variant of DFS
 Only one successor is generated at a time rather 

than all successors
 Each partially expanded node remembers which 

successor to generate next

 Memory requirement: O(m) vs. O(bm)

CS 420: Artificial Intelligence 56



CS 420: Artificial Intelligence 57

Depth-Limited Search
 Is the same as depth-first search with depth limit l, nodes 

at depth l are treated as if they have no successors

 Complete? Time? Space? Optimal?



CS 420: Artificial Intelligence 58

Iterative Deepening DF-Search
 Gradually increase the depth limit until a goal is 

found
 Combines the benefits of depth-first and breadth-

first search



CS 420: Artificial Intelligence 59

Depth Limit = 0



CS 420: Artificial Intelligence 60

Depth Limit = 1



CS 420: Artificial Intelligence 61

Depth Limit = 2



CS 420: Artificial Intelligence 62

Depth Limit = 3 



CS 420: Artificial Intelligence 63

Analysis of Iterative Deepening Search
 Number of nodes generated in a depth-limited search to depth 

d with branching factor b:
NDLS = b0 + b1 + b2 + … + b d-2 + b d-1 + b d

 Number of nodes generated in an iterative deepening search 
to depth d with branching factor b:
NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + bd

 For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

 Overhead = (123,456 - 111,111)/111,111 = 11%

 IDS is the preferred uninformed search method when search 
space is large and depth of solution is unknown



CS 420: Artificial Intelligence 64

Analysis, Continue

 Complete?
 Yes

 Time?
 (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

 Space?
 O(bd) (tree search version)

 Optimal?
 Yes, if step costs are identical or path cost is a 

nondecreasing function of the depth of the node



CS 420: Artificial Intelligence 65

Summary of Uninformed Tree 
Search Strategies

 Complete and optimal under certain 
conditions

 Discussion on bidirectional search



CS 420: Artificial Intelligence 66

Analysis of Graph Search
 Much more efficient than Tree-Search
 Time and space are proportional to the size of the 

state space

 Optimality:
 uniform-cost search or breadth-first search with identical 

step costs are still optimal even if it returns the first path 
found

 iterative-deepening, identical step cost or non-decreasing 
function of depth of a node

 Tradeoff: depth-first or iterative deepening are not 
linear anymore



Bidirectional Search

 Runs two simultaneous searches 
 Forward from initial state
 Backward from goal state

CS 420: Artificial Intelligence 67



CS 420: Artificial Intelligence 68

Searching With Partial Information
 We have covered: Deterministic, fully observable  single-

state problem
 agent knows exactly which state it will be in
 solution is a sequence

 Deterministic, non-observable  multi-state problem
 Also called sensorless problems (conformant problems)
 agent may have no idea where it is
 solution is a sequence

 Nondeterministic and/or partially observable  contingency 
problem
 percepts provide new information about current state
 often interleave search, execution
 solution is a tree or policy

 Unknown state space  exploration problem (“online”)
 states and actions of the environment are unknown



CS 420: Artificial Intelligence 69

Example: Vacuum World
 Single-state, start in 

#5. Solution?
 [Right, Suck]

 Multi-state, start in 
#[1, 2, …, 8]. 
Solution?
 [Right, Suck, Left, Suck]



CS 420: Artificial Intelligence 70

Sensorless (multi-
state problem)



CS 420: Artificial Intelligence 71

Contingency Problem
 Contingency, start in #5 

& 7.
 Nondeterministic: suck 

may dirty a clean carpet
 local sensing: dirt, 

location only at current 
location

 Solution?
 Percept: [Left, Clean] 

[Right, if dirty then Suck]



CS 420: Artificial Intelligence 72

Summary
 We have covered methods for selecting actions in 

environments that are deterministic, observable, 
static, and completely known

 Problem formulation requires abstraction

 Uninformed search strategies



CS 420: Artificial Intelligence 73

Announcement

 Now, in-class exercises



Question 1

 Define the following items:
 State, state space, search tree

 Does a finite state space always lead to a 
finite search tree?

 How about a finite state space that is a tree 
or a finite directed acyclic graph? 

CS 420: Artificial Intelligence 74



Question 2

 Give a complete problem formulation for 
each of the following.
 You have to color a planar map using only four 

colors, in such a way that no two adjacent 
regions have the same color.

 A 3-foot-tall monkey is in a room where some 
bananas are suspended from the 8-foot ceiling. 
He would like to get the bananas. The room 
contains two stackable, movable, climable 3-foot-
high crates.

CS 420: Artificial Intelligence 75



Question 3

 Consider a state space where the start state 
is number 1 and the successor function for 
state n returns two states, numbers 2n and 
2n+1
 Draw the portion of the state space from 1 to 15
 Suppose the goal state is 11. List the order in 

which nodes will be visited for BFS, DLS with 
limit 3, and IDS.

 How well would bidirectional search work on this 
problem?

CS 420: Artificial Intelligence 76



Question 4

 Prove that uniform-cost search and BFS with 
constant step costs are optimal when used 
with the Graph-Search algorithm.

 Show a state space with varying step costs 
in which Graph-Search using iterative 
deepening finds a suboptimal solution.

CS 420: Artificial Intelligence 77



Question 5

 Describe a state space in which iterative 
deepening search performs much worse 
than depth-first search (for example, O(n2) 
vs. O(n)).

CS 420: Artificial Intelligence 78



Question 6

 Use uniform-cost search implemented with 
the graph search algorithm to find a route 
from Arad to Bucharest.

CS 420: Artificial Intelligence 79


