تمتص أجزاء متساوية من شعاع الضوء الساقط بتغيرات متساوية في تركيز المادة الممتصة عند ثبوت طول المسار الضوئي المار بالمادة الممتصة:

$$A = \mathcal{E}LC$$

A: الامتصاصية

 $(L.mol^{-1}.cm^{-1})$ ع : معامل الامتصاصية المولارية : ε

L: طول المسار الضوئي (1cm)

C: التركيز (mol/L)

* النفاذية:

$$\%T = \frac{I}{I_o} \times 100$$

I : شدة الضوء النافذ

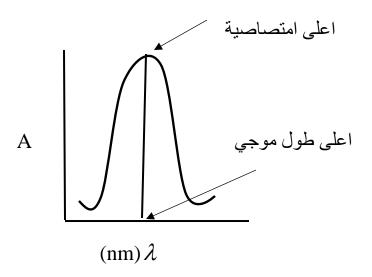
I: شدة الضوء الساقط

* علاقة النفاذية بالامتصاصية (علاقة عكسية)

$$A = \log \frac{I_o}{I}$$

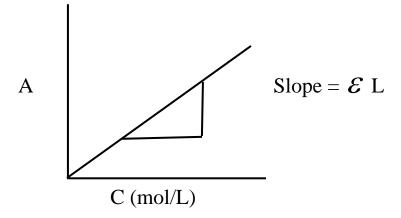
طريقة العمل:

 λ_{\max} ايجاد اعلى طول موجي λ_{\max} :


يتم تحضير التراكيز التالية ^{-4}M $\times 10^{-4}$ من محلول ^{-1}M بتركيز (0.1M) في قناني حجمية سعة ^{-1}M بتركيز (0.1M) في قناني حجمية سعة ^{-1}M

$$M_1$$
 $V_1 = M_2$ V_2 $1 \times 10^{-4} * 50 = 0.1 * V_2$

تقاس الامتصاصية لتركيز معين مثلا (^{-4}M) بأطوال موجية مختلفة mm الامتصاصية لتركيز معين مثلا (^{-4}M) بأطوال موجية مختلفة spectrophotometer لقياس عمل جهاز المطيافية عمل الامتصاصية :



$(nm)\lambda$	A
400	0.1
420	0.3
440	0.5
460	0.7
480	0.9
500	1.1 (اعلى امتصاصية)
520	0.9
540	0.7
560	0.5
580	0.3
600	0.1

2- إيجاد ${\cal E}$: يثبت الجهاز على اعلى طول موجي $\lambda_{\rm max}$ وتقاس الامتصاصية لبقية التراكيز .

$C \times 10^{-4} (\text{mol/L})$	A
1	1.1
3	1.3
5	1.5
7	1.7

