the work content list is picked. This job is alternately placed at all possible locations having small value of C_{max} is selected for subsequent iteration. Then, next job from work content) are arranged in a partial sequence one by one. The partial sequence iterative manner. Two jobs having largest values of total process times (called total 4.6.3 Nawaz, Enscor, and Ham (NEH) Algorithm Nawaz, Enscor and Ham (NEH) algorithm constructs jobs sequence in in the partial sequence. This job is permanently placed at the location where it yields lowest C_{max} value for the partial schedule. In a similar fashion, next job from the work content list is picked, and placed one by one at all possible locations in the partial sequence to find C_{max} value of the partial sequence. This job is permanently placed at the location where partial sequence has minimum C_{max} value. The process is continued till all jobs from the content list are placed in the partial sequence. NEH algorithm is formally described as under; ## Step (1) Find Total work content (T_i) for each job using expression $$T_j = \sum_{i=1}^{i=m} p_{ij}$$ ### Step(2) Arrange jobs in a work content list according to decreasing values of T_j ## Step (3) Select first two jobs from the list, and form two partial sequences by interchanging the place of the two jobs. Compute C_{max} values of the partial sequences. Out of the two partial sequences, discard the partial sequence having larger value of C_{max} . Call the partial sequence with lower value of C_{max} as incumbent sequence ## Step (4) Pick next job from the work content list, and place it at all locations in the incumbent sequence. Calculate the value of C_{max} for all the sequences. # Step (5) Retain the sequence with minimum value of C_{max} as incumbent sequence and, discard all the other sequences. # Step (6) If there is no job left in the work content list to be added to incumbent sequence, STOP. Otherwise go to step (4). # Example 4.5 Solve $F_3 \parallel C_{max}$ problem for the data shown below using NEH algorithm. | | iı | j ₂ | j ₃ | j ₄ | |----------------|----|----------------|----------------|----------------| | M. | | 8 | 3 | 4 | | M ₂ | 5 | 1 | 3 | - | #### Solution: For four jobs, the T_j values are shown in the Table 4.11 Table 4.11 Calculation for T_j values | Table 4.11 | and the state of the last state of the | i ₄ | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------| | jable 4.11 | j ₂ | 3 4 | | And the second s | 8 | 3 4 | | MI Legisla and the same of the same section of the same sam | Secretarion de la constitución d | 5 4 | | | | 4 2 | | | 41 | | | | 11 | 12 10 | | T ₁ 15 | A Completion of the State of the Completion t | has be to the second and the second and the second and the second and the second | The ordered list of jobs according to decreasing T_j values is; $\{j_1, j_2, j_3, j_4\}$ ## Iteration 1 Since jobs j_1 and j_2 have highest values of T_j , select these two jobs to form partial schedule. The calculations of C_{max} value for partial schedule $(j_1, j_2, *, *)$ are shown below in Table 4.12. Note $C_{max} = 19$ for the partial schedule $(j_1, j_2, *, *)$. Table 1 C_{max} calculations for partial schedule S_{12} **: $(j_1, j_2, *, *)$ | The second secon | jı | j ₂ | C ₁ | C_2 | Cmax | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------|----------------|-------|------| | M_1 | 6 | 8 | 6 | 14 | | | M ₂ | 5 | 1 | 11 | 15 | | | M ₃ | 4 | 4 | 15 | 19 | 19 | The calculations of C_{max} value for partial schedule (j_2 , j_1 ,*,*) are shown below in Table 4.13. Note $C_{max} = 23$ for the partial schedule (j_2 , j_1 ,*,*). Table 4.13 C_{max} calculations for partial schedule S_{21} **: $(j_2, j_1, *, *)$ | and the same | J2 | jı | Cı | C_2 | Cmay | |--------------|----|----|----|-------|------| | M_1 | 8 | 6 | 8 | 14 | | | M_2 | 1 | 5 | 9 | 19 | | | M_3 | 4 | 4 | 13 | 23 | 23 | The makespan (C_{max}) values for the partial schedules are; Table 24.14 Comparison between the two partial sequences | Schedule | C_{max} | |-------------------------------------|-----------| | S_{21} · · · · $(j_2, j_1, *, *)$ | 23 | | S_{12} · · : $(j_1, j_2, *, *)$ | 19 | Since value of C_{max} is smaller for partial sequence S_{12} .: (j_1 , j_2 , *, *), we further investigate this partial schedule. So partial sequence S_{21} :: $(j_2, j_1, *, *)$ is fathomed and not investigated any more. # Iteration 2 Now job j_3 is next in ordered list after jobs j_1 and j_2 with a T_w value of 12. Job j_3 can be placed at three sequence positions in partial sequence (j_1 , j_2 , *, *). - a) Before job j₁ as follows: New Partial Sequence, S_{312*}: (j₃, j₁, j₂, *) - b) After job j₁ as follows: New Partial Sequence, S_{132*}: (j₁, j₃, j₂, *) - c) After job j₂ as follows: New Partial Sequence, S₁₂₃.: (j₁, j₂, j₃, *) Calculations of C_{max} for sequence, S_{123} :($j_1, j_2, j_3, *$) are shown below in the following table 4.15. Table 4.15 C_{max} calculations for partial sequence $(j_1, j_2, j_3, *)$ | | jı | j ₂ | j 3 | C_1 | C_2 | C ₃ | C _{max} | |----------------|----|----------------|------------|-------|-------|----------------|------------------| | M_1 | 6 | 8 | 3 | 6 | 14 | 17 | | | M_2 | 5 | 1 | 5 | 11 | 15 | 22 | | | M ₃ | 4 | 4 | 4 | 15 | 19 | 26 | 26 | The Gantt chart of the partial schedule S_{123*}:(j₁, j₂, j₃,*) is shown in Figure Figure 4.8 Gantt chart for the partial sequence S_{123*}: (j₁, j₂, j₃, *) Note $C_{max} = 26$ for the partial schedule, S_{123} :($(j_1, j_2, j_3, *)$. The calculations of C_{max} value for this schedule (j₃,j₁,j₂,*) are shown below in the following table 4.16. | Table 4.16 C _{max} calculations for partial schedule (j ₃ | , j ₁ , | j ₂ , | *) | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|----| | and the same t | - | The second | - | | | j ₃ | j ₁ | j ₂ | C ₃ | C_1 | C_2 | Cmax | |----------------|----------------|----------------|----------------|----------------|-------|-------|------| | M_1 | 3 | 6 | 8 | 3 | 9 | 17 | | | M_2 | 5 | 5 | 1 | 8 | 14 | 18 | | | M ₃ | 4 | 4 | 4 | 12 | 18 | 22 | 22 | The calculations of C_{max} value for the schedule S_{132} -are shown in the following table 4.17. Table 34.17 C_{max} calculations for partial schedule S_{132*}: (j₁, j₃, j₂, *) | | Table 34.1 | / Cmax care | 1 | Cı | Cı | C ₂ | Cmax | |----------------|------------|-------------|----|----|-----------------------------|----------------|----------------------------------| | | : | in | 12 | 6 | | | And community of the property of | | M_1 | 6 | 3 | 0 | | and the same of the same of | | has a market of the party | | M ₂ | 5 | 5 | 1 | 11 | 16 | 18 | La Burancia de Principio de 180 | | M ₃ | 4 | 4 | 4 | 15 | 20 | 24 | 24 | A comparison of the three schedules indicate that schedule S_{312} : (j3, j1, j2,*) results in minimum C_{max} value, as shown in below table 4.18: Table 4.18 Comparison of the three partial sequences. | Partial Schedule | Cmax | |----------------------------------|------| | S_{123} * $(j_1, j_2, j_3, *)$ | 26 | | S_{312} * $(j_3, j_1, j_2, *)$ | 22 | | S_{132} * $(j_1, j_3, j_2, *)$ | 24 | ## **Iteration 3** Job j_4 is the last job in the ordered list. Using minimum C_{max} value partial schedule from iteration 2, generate four sequences by inserting job j_4 at four possible locations in partial sequence $(j_3, j_1, j_2, *)$ as follows: - a) Before job j_3 as follows: New Sequence, S_{4312} : (j_4, j_3, j_1, j_2) - b) After job j₃ as follows: New Sequence, S_{3412} : (j_3, j_4, j_1, j_2) - c) After job j_1 as follows: New Sequence, S_{3142} : (j_3, j_1, j_4, j_2) - d) After job j_2 as follows: New Sequence, S_{3124} : (j_3, j_1, j_2, j_4) The calculations of C_{max} value for this schedule (j_4, j_3, j_1, j_2) are shown below in the following table 4.19 **Table 4.19** C_{max} calculations for schedule (j_4, j_3, j_1, j_2) | | i. | 11 :- | 11 : | | 1 | I I | 14, 33, 31, 3 | 4) | | |----------------|----|-------------------|------|----------------------------------------|---------------------------------------------|------------------------------|---------------|----------------|-------------------------------| | | J4 | J J3 | J1 | J2 | C ₄ | C_3 | C_1 | C ₂ | C | | M_1 | 4 | 3 | 6 | 8 | 4 | 7 | 13 | 21 | Cmax | | M ₂ | 4 | 5 | 5 | 1 | 8 | 13 | 18 | 22 | N CONTROL AND POLICE OF COMME | | M ₃ | 2 | 4 | 4 | 4 | 10 | 17 | 22 | 26 | a service de la constante | | - | - | The second second | | Copies and accommon processing and and | Sent the state of the later of the state of | Mekaniprosessinjannosen og d | 22 | 26 | 26 | The calculations of C_{max} value for this schedule (j_3, j_4, j_1, j_2) are shown below in the following table 4.20 Algorithms C o calculations for schedule (j3, j4, j1, j2) | | Г | | O Cmax Ca | ilculation. | Ca | C ₄ | C_1 | C ₂ | C_{max} | |----------------|----------------|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------| | | j ₃ | j ₄ | jı | J2 | 3 | 7 | 13 | 21 | | | M_1 | 3 | 4 | 6 | 8 | Q | 12 | 18 | 22 | | | M ₂ | 5 | 4 | 5 | and the second of o | 12 | 14 | 22 | 26 | 26 | | M ₂ | 4 | 2 | 4 | 4 | L Z | CLASS CONTRACTOR OF THE PARTY O | AND THE RESERVE | SEA OF STREET, | | The calculations of C_{max} value for this schedule (j_3, j_1, j_4, j_2) are shown below in the following table 4.21 Table 4.21 C_{max} calculations for schedule (j₃, j₁, j₄, j₂) | | management of the state of the state of | İı | j ₄ | STATE OF THE COMPANY AND A STATE OF THE PARTY PART | C ₃ | C ₁ | C ₄ | C ₂ | C _{max} | |----------------|-----------------------------------------|----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|------------------| | M ₁ | 3 | 6 | 4 | 8 | 3 | 9 | 13 | 21 | | | M ₂ | 5 | 5 | 4 | 1 | 8 | 14 | 18 | 22 | | | M ₃ | 4 | 4 | 2 | 4 | 12 | 18 | 20 | 26 | 26 | The calculations of C_{max} value for this schedule (j_3, j_1, j_2, j_4) are shown below in the following table 4.22 Table 4.22 C_{max} calculations for schedule (j_3, j_1, j_2, j_4) | - | ja ji | | | | | | | | | |-------|-------------------------------------------|----|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|--------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | J 3 | J1 | j ₂ | j ₄ | C ₃ | Cı | Ca | C | C | | | 2 | 1 | | 1 ~7 | | | 1 17 1 | 21 | Cmax | | M_2 | - | | | 1 4 | | 1 / | 1 10 | | | | | | | | | | | | | Committee of the commit | | | of the second second second | | And the second second second second | Section of the Party Par | - | TO THE PERSON NAMED IN COLUMN TWO | 19 | 27 | 27 | The comparison of C_{max} values for the four schedules is presented below in table 4.23 Table 4.23 Comparison of the four partial sequences | Schedule | C _{max} | |------------------------------|------------------| | $S_{3124}:(j_3,j_1,j_2,j_4)$ | 27 | | $S_{3124}:(j_4,j_3,j_1,j_2)$ | 26 | | $S_{3412}:(j_3,j_4,j_1,j_2)$ | 26 | | $S_{3142}:(j_3,j_1,j_4,j_2)$ | 26 | The NEH method yields three alternate schedules with a minimum makespan of 26. Clearly, NEH provides more elaborate results as compared to CDS or Slope heuristic.