Solution:

Since there are three machines in the original problem, two (m-1 =2) surrogate $F_2 \parallel C_{max} \text{ problems will be formed.}$

i. Surrogate Problem 1

Consider Machine M₁ as surrogate machine 1 (M₁') and Machine M₃ as surrogate machine 2 (M2') as shown in Table below.

Table 4.6 First 2-machine Surrogate problem data using CDS Heuristic.

	jı	j ₂	јз	j ₄
$\mathbf{M_1'} = \mathbf{M_1}$	6	8	3	4
$M_2'=M_3$		4	4	2

Applying Johnson Rule, Set $I = \{j_3\}$, set $II = \{j_1, j_2, j_4\}$ or set $II = \{j_2, j_1, j_4\}$. Hence there are two possible sequences:

Sequence $1 = \{j_3, j_1, j_2, j_4\}$ and, is given in Table 4.7.

Table 4.7 First sequence obtained and job's processing times.

The second secon	J3	j ₁	j ₂	i ₄
$M_1' = M_1$	3	6	8	4
$M_2' = M_3$	4	4	4	2

Using directed graph, the C_{max} calculations are shown in Figure 3.5

Figure 4.5 Directed Graph For Sequence/Schedule {j3, j1, j2, j4}

Sequence $2 = \{j_3, j_2, j_1, j_4\}$ and, is given in the Table 4.8.

Table 4.8 Second sequence obtained and job's processing time.

A CONTRACTOR OF THE PARTY OF TH	J ₃	j ₂	jı	j4	
$M_1' = M_1$	3	8	6	4	
$M_2' = M_3$	4	4		2	

Using directed graph, the C_{max} calculations are shown in Figure 3.6

Figure 4.6 Directed graph for sequence/schedule $\{j_3, j_2, j_1, j_4\}$

ii. Surrogate Problem 2

From the problem data in Table, formulate 2-machine problem as under;

Table 4.9 Data for surrogate problem 2

	grandensia karakania esta anti-	To proceed the source of the second	0	Problem 2		
		j ₁	j ₂	j ₃	i ₄	
-	$M_1'=M_1+M_2$	11	9	8	8	and the second
***************************************	$M_2'=M_2+M_3$	9	5	9	6	A CONTRACTOR CONTRACTOR

Applying Johnson rule; Set–I = $\{j_3\}$, and, Set-II = $\{j_1, j_4, j_2\}$. The Johnson sequence is, therefore, $\{j_3, j_1, j_4, j_2\}$. The computation of C_{max} is shown in Table 4.10

Table 4.10 C_{max} calculations using tabular method for sequence: $\{j_3, j_1, j_4, j_2\}$

Machine	•	1		(3, 11, 14	1, J25				
	JS	JI I	. 14	12	L3	Ci	C_{\bullet}	C.	C
M ₁	3	U	4	ð	3	9	13	21	
M_2	5	5	4	1	8	14	18	22	
M ₃	4	4	2	4	12	18	20	26	26

The Gantt chart for schedule is shown in Figure 4.7

Figure 4.7 Gantt chart for sequence $\{j_3, j_1, j_4, j_2\}$.

The schedule $\{j_3$, j_1 , j_4 , $j_2\}$ is also presented by directed graph as shown in Figure 4.8

Figure 4.8 Directed graph for schedule {j₃, j₁, j₄, j₂}

Conclusion: Minimum C_{max} value is 26 using sequence: {j₃, j₁, j₄, j₂}

4.6.3 Nawaz, Enscor, and Ham (NEH) Algorithm

Nawaz, Enscor and Ham (NEH) algorithm constructs jobs sequence in iterative manner. Two jobs having largest values of total process times (called total work content) are arranged in a partial sequence one by one. The partial sequence having small value of C_{max} is selected for subsequent iteration. Then, next job from the work content list is picked. This job is alternately placed at all possible locations