82 16. Wind Resource Assessment

 $\frac{M^2}{u^2} = \frac{\Gamma^2(1+\frac{1}{k})}{\Gamma(1+\frac{2}{k})}$ - note: assumption: total distribution is Weibull distribution Step 4: Shelter effects Correction of Weibull A parameter depending on: - distance obstacle-site (x)- height and length of obstacle (h, L)- height at site (H)- porosity of obstacle (P) \rightarrow empirical relationships Step 4: Orography Correction for speed-up effects from local terain inhomogeneities Assumption: flow is modelled as potential flow \rightarrow velocity is gradient of a potential $\boldsymbol{u} = \nabla \chi$ \rightarrow calculation of potential flow perturbations by terain advantage: mathematically attractive description (polar representation) \rightarrow potential flow perturbation \rightarrow surface friction effects $A_{corr} = A(1 + \Delta S)$ $\Delta S = f(H.L)$ with half width L and height Hfor smooth hills (slope $\langle \approx 0.3 \rangle$ only!

16.2 Resource Assessment in Complex Terrain - Mesoscale Modeling

Fig. 16.1. Structure of the Wind Atlas Analysis and Application Programme.