Model and remote-sensing data

SOEE1400 Lecture 5

ENVI 1400 : Meteorology and Forecasting

ENVI 1400 : Meteorology and Forecasting

3

Synoptic Analysis

- A simple analysis based on the observed synoptic data provides an instantaneous snapshot of the state of the atmosphere
- Problems:
 - Very scattered observations...excessive interpolation in data sparse regions
 - Bias by individual measurements
 - Instrument error
 - Sample unrepresentative of general conditions

Model Analyses

 The use of numerical models in an analysis-forecast cycle introduces an extra dimension – time.

• ADVANTAGES:

- Data from past observations affects present analysis (4D variable assimilation)
- Regions without observations are handled more realistically because information from past observation upwind propagates into data-sparse region.
- Raw observations are smoothed during interpolation onto model grid – helps remove bias from nonrepresentative measurements.
- LIMITATIONS
 - Generally better than just sparse observations, BUT it is not real data – errors are very hard to assess.

REANALYSIS

- ECMWF (and NCEP in USA) conduct reanalyses of past → forecasts of past weather.
 - Not all observations are available in time to be included in regular forecast cycle
 - Allows time for extra quality control and corrections to be applied
- ECMWF:
 - ERA-15 : 1978-1993
 - ERA-40 : 1958-1997

- Reanalysis data are used for:
 - Climatological studies
 - As model initialization fields (for research) in data-sparse regions or upper atmosphere
 - Atmospheric chemistry modelling studies
 - To provide boundary conditions for regionalscale modelling studies (Research)

MODELS

- Global models divide the world into a grid, data is held on the intersections of the grid.
- Figure shows a 10° grid
- MetOffice global model uses a grid of approximately 0.8° longitude by 0.5° latitude
 - UK represented by ~10x20 grid points (~60km spacing)

- MetOffice mesoscale model – higher resolution, limited area model.
- Uses the global model to provide initialization and boundary conditions.
 - 0.11° by 0.11° grid: approximately 11km resolution.
 - 38 vertical levels in both global and mesoscale models, spacing increases with altitude.

Numerical weather prediction.

Model resolution is too low to resolve:

- Individual clouds, even large thunderstorms.
- Full details of topography
- Details of changes of surface type

Processes on scales smaller than the grid must be parameterized.

Parameterization

- Parameterization is the simplification of a complex physical process in terms of parameters that are available to the model, or readily measured.
- Models must use parameterizations of processes that :
 - Take place on scales smaller than the model grid
 - Involve parameters that are not explicitly defined in the model

Satellite Data

 First meteorological satellite: TIROS-1 (Television Infrared Observation Satellite), launched April 1, 1960.

TIROS-1 image of tropical storm in Pacific, April 1960.

Geostationary satellites:

- remain above the same spot on the Earth's surface – orbital period = period of rotation of earth.
- Approximately 36000km above surface.
- 5 or 6 satellites spaced to give coverage of whole earth.
- e.g: METEOSAT (EU), GOES series (USA)

Polar Orbiting:

- Orbit is oriented north-south (inclined slightly). Often sunsynchronous.
- Orbital period ~100 minutes.
- Pass over different part of surface on every orbit – passes over same spot at irregular intervals.
- Low-altitude (700-800km) allows much higher resolution imagery than geostationary satellites.

See: http://www.sat.dundee.ac.uk, http://www.goes.noaa.gov/

NOAA-15 polar orbiter ground track for September 28 2005.

Satellite data ... main channels

- Visible imagery (B/W and true colour):
 - "like a photograph from space" interpretation is intuitive.
 - Thin cloud (particularly cirrus) can be transparent.
 - No use at night.
- Infrared imagery (multiple wavelengths in IR)
 - AVHRR imagery from Dundee archive: CH2 = visible, CH4 = thermal infrared.
- Water vapour concentration (integrated through full depth of atmosphere)

Satellite data ... others ...

- Sea Surface Temperature
- Ocean Chlorophyll content
- Land use
- Wind speed over ocean from synthetic aperture radar (SAR)
- Chemistry (O₃, NO₂,...)

Visible imagery from METEOSAT

Infra red imagery from METEOSAT

QuikScat winds derived from SAR measurements (includes 22 hours of data)

Vertical profiles from satellites

- Most satellites look vertically downwards data is either:
 - Vertical integral through atmosphere (e.g. water vapour)
 - Represents value at some upper altitude (cloud top)
 - Surface value
- In latter two cases, it can sometimes be difficult to determine vertical location e.g:
 - distinguishing cloud from snow/ice,
 - low cloud temperature from surface temperature.

- Vertical profiles of some quantities can be obtained via limb-sounding – looking at the edge (limb) of the visible disk of earth, i.e. sideways through the atmosphere.
 - Vertical resolution is good
 - Horizontal resolution is poor
- Particularly useful for chemical measurements, where certain wavelengths of light are absorbed by known chemical species.

Absorption of light by particular molecular species allows a vertical profile of their concentration to be determined

Satellite data: active sensors

- Active sensors transmit a beam of radiation which is reflected from atmospheric constituents (clouds, rainfall, aerosol ...) back to a sensor on the satellite.
- Examples:
 - TRMM (space-borne rainfall radar) "sees" rainfall within cloud.

http://trmm.gsfc.nasa.gov/

- CloudSat (space-borne cloud and rainfall radar)
- CALIPSO (space-borne lidar) sees aerosol, thin cirrus and cloud-top.

The A-train (NASA)

CloudSat

Meteosat

CloudSat

Courtesy of Thorwald Stein, U. Reading

Summary

- Model analysis-forecast cycle provides a means of smoothing measurements, and interpreting them in a common framework.
- Satellites and radar provide many different measurements – increasing variety and quality with time.