CHAPTER 12. OZONE AIR POLLUTION

So far we have emphasized the beneficial nature of tropospheric O_3 as the precursor of OH. In surface air, however, O_3 is toxic to humans and vegetation because it oxidizes biological tissue. As we have seen in chapter 11, O_3 is produced in the troposphere from the oxidation of CO and hydrocarbons by OH in the presence of NO_x . In densely populated regions with high emissions of NO_x and hydrocarbons, rapid O_3 production can take place and result in a surface air pollution problem. We describe in this chapter the O_3 pollution problem in the United States, examine the factors controlling O_3 concentrations, discuss the efficacy of emission control strategies, and conclude by linking the regional air pollution problem back to the global budget of tropospheric O_3 .

12.1 AIR POLLUTION AND OZONE

Fuel combustion and other activities of our industrial society release into the atmosphere a large number of pollutants which can, by direct exposure, be harmful to public health or vegetation. This air pollution is generically called "smog" because it is associated with reduced visibility. The low visibility is due to scattering of solar radiation by high concentrations of anthropogenic aerosols (section 8.2.2). The health hazards of smog are caused in part by the aerosol particles but also by invisible toxic gases including O_3 , CO, SO_2 , and carcinogens present in the polluted air together with the aerosols. In the United States and in most other industrialized countries, air quality standards (concentrations not to be exceeded) have been imposed to protect the population against exposure to When the standards are exceeded, different air pollutants. emission controls must be enacted. National legislation for air pollution control in the United States started with the Clean Air Act of 1970. Since then, O_3 has proven to be the most difficult pollutant to bring into compliance with air quality standards.

Concentrations of O_3 in clean surface air are in the range 5-30 ppbv. The air quality standard for O_3 in the United States, newly revised as of 1997, is a maximum 8-hour average O_3 concentration of 84 ppbv not to be exceeded more than three times per year. Figure 12-1 shows a three-year time series of O_3 concentrations measured at Boston, Massachusetts. Concentrations peak in summer when production is most active (chapter 11) and

occasionally exceed 84 ppbv. There is a large day-do-day variability reflecting meteorological conditions. Concentrations of O_3 are highest under stagnant conditions associated with strong subsidence inversions which allow pollutants to accumulate near the surface (section 4.3.5).

Figure 12-1 Time series of O₃ concentrations measured in Boston, Massachusetts.

Figure 12-2 90th percentiles of summer afternoon ozone concentrations measured in surface air over the United States. "90th percentile" means that concentrations are higher 10% of the time. Adapted from Fiore, A.M., et al., *J. Geophys. Res.*, *103*, 1471-1480, 1998.

Figure 12-2 shows the 90th percentile concentrations of summer afternoon O_3 concentrations in surface air over the United States. Values in excess of 80 ppbv are found over large areas of the country. Concentrations are highest over southern California, eastern Texas, the industrial midwest, and the mid-Atlantic eastern states, reflecting roughly the distribution of population. Within a given region, there is little difference in O_3 concentrations between

cities, suburbs, and nearby rural areas; O_3 is a regional rather than urban pollution problem. In Massachusetts, for example, O_3 concentrations tend to be highest not in Boston but in rural western Massachusetts and Cape Cod which are frequently downwind of metropolitan areas to the southwest. The broad spatial extent of the O_3 pollution problem has important implications not only for population exposure but also for effects on crops and forests. There is abundant evidence that sensitive crops are damaged by O_3 concentrations as low as 40 ppbv, well below the current air quality standard.

The presence of high concentrations of O_3 in smog was first discovered in Los Angeles in the 1950s. Laboratory chamber experiments conducted at the time showed that O₃ was generated by photochemical reactions in the atmosphere involving hydrocarbons and NO_x emitted from automobiles. This atmospheric mechanism for O_3 production helped to explain why O₃ concentrations are often higher downwind of urban areas than in the urban areas themselves. The details of the chemical mechanism were poorly understood until the 1970s, however, because the essential role of OH as a hydrocarbon oxidant was not recognized (section 11.1). Before then it was thought that hydrocarbons would be oxidized by O atoms originating from the photolysis of O_3 and NO_2 . We now know that hydrocarbon oxidation by O atoms is negligibly slow and that OH is the critical hydrocarbon oxidant driving O₃ formation. In the next section we examine in more detail the chemistry of O₃ pollution and discuss the implications for control strategies.

12.2 OZONE FORMATION AND CONTROL STRATEGIES

The high concentrations of O_3 in surface air over the United States arise from high emissions of NO_x and of various reactive hydrocarbons (including alkanes, alkenes, aromatics, and multifunctional compounds). The emission of NO_x is mainly from fossil fuel combustion (section 11.4). The hydrocarbons are emitted by a range of human activities including combustion, fuel evaporation, solvent use, and chemical manufacturing. They also have a large natural source from terrestrial vegetation (the smell of a pine forest, for example, is due to natural hydrocarbons).

Production of O_3 in polluted air follows the same chain reaction mechanism as described in Chapter 11. The chain is initiated by

production of HO_x.

$$O_3 + hv \to O_2 + O(^1D) \tag{R1}$$

$$O(^{1}D) + M \to O + M \tag{R2}$$

$$H_2O + O(^1D) \to 2OH \tag{R3}$$

and is propagated by reaction of OH with hydrocarbons. We use RH (where R is an organic group) as simplified notation for hydrocarbons. Oxidation of a hydrocarbon by OH produces an organic peroxy radical RO₂:

$$\begin{array}{ccc} O_2 \\ RH + OH & \rightarrow & RO_2 + H_2O \end{array}$$
(R4)

The relative importance of different hydrocarbons in driving reaction (*R4*) can be measured in terms of their abundance and their reactivity with OH. The reactivity generally increases with the size of the hydrocarbon because of the larger number of C-H bonds available for H abstraction by OH; unsaturated hydrocarbons are also highly reactive because OH adds rapidly to the C=C double bonds. In surface air over the United States, large alkanes and unsaturated hydrocarbons are sufficiently abundant to dominate over CO or CH₄ as sinks of OH, in contrast to the remote troposphere (chapter 11).

The RO_2 radical produced in (*R4*) reacts with NO to produce NO_2 and an organic oxy radical RO:

$$RO_2 + NO \rightarrow RO + NO_2$$
 (R5)

 NO_2 goes on to photolyze and produce O_3 . The RO radical has several possible fates. It may react with O_2 , thermally decompose, or isomerize. The subsequent chemistry is complicated. Typically, carbonyl compounds and a HO_2 radical are produced. A generic representation of the reaction, following the fate of CH_3O described in section 11.3.3, is

$$RO + O_2 \rightarrow R'CHO + HO_2$$
 (R6)

$$HO_2 + NO \rightarrow OH + NO_2$$
 (R7)

The carbonyl compound R'CHO may either photolyze to produce HO_x (branching the chain, as we saw for CH_2O in section 11.3.3) or react with OH to continue the chain propagation. The net reaction *(R4)-(R7)* is

net:
$$RH + 4O_2 \rightarrow R'CHO + 2O_3 + H_2O$$

The chain is terminated by loss of HO_x radicals. This loss takes place in two principal ways. When NO_x concentrations are not too high, peroxy radicals may react with themselves instead of with NO to produce peroxides and other oxygenated compounds. The most important process is the self-reaction of HO_2 , as in the remote troposphere (section 11.3.2):

$$HO_2 + HO_2 \to H_2O_2 + O_2 \tag{R8}$$

At very high NO_x concentrations, the dominant sink for HO_x radicals is the oxidation of NO_2 by OH:

$$NO_2 + OH + M \rightarrow HNO_3 + M$$
 (R9)

Figure 12-3 Cycling of HO_x and O_3 production in a polluted atmosphere.

Figure 12-3 is a diagram of the mechanism. The organic radicals RO_2 and RO propagate the reaction chain and are thus considered part of the HO_x radical family. One chain propagation cycle (*R4*)-(*R7*) produces two O_3 molecules (one from reaction (*R5*) and one from reaction (*R7*)). In a polluted atmosphere, we can assume

that chain propagation is efficient so that rate(R4) = rate(R5) = rate(R6) = rate(R7). The rate of O₃ production,

$$P_{O3} = k_5[RO_2][NO] + k_7[HO_2][NO]$$
(12.1)

can be written equivalently

$$P_{O3} = 2k_7[HO_2][NO] \tag{12.2}$$

The efficient cycling also implies a steady state for OH defined by a balance between production from *(R7)* and loss from *(R4)*:

$$[OH] = \frac{k_7 [HO_2][NO]}{k_4 [RH]}$$
(12.3)

Consider now the steady-state equation for the HO_x radical family,

$$P_{HOx} = k_8 [HO_2]^2 + k_9 [NO_2] [OH] [M]$$
(12.4)

In the limiting case of low NO_x concentrations, rate(R8) >> rate(R9) and the second term on the right-hand side of equation (12.4) can be neglected. Substituting (12.4) into (12.2) yields:

$$P_{O3} = 2k_7 \left(\frac{P_{HOx}}{k_8}\right)^{\frac{1}{2}} [NO]$$
 (12.5)

Note that O_3 production varies linearly with the NO concentration but is independent of hydrocarbons (except for the effect of branching reactions on P_{HO_X}). This case is called the NO_X -limited regime because the O_3 production rate is limited by the supply of NO_X .

Consider now the other limiting case where NO_x concentrations are high so that rate(*R8*) << rate(*R9*). In that case the first term on the right-hand side of equation (12.4) can be neglected, and rearrangement of (12.4) yields:

$$[OH] = \frac{P_{HOx}}{k_9[NO_2][M]}$$
(12.6)

which can then be replaced into (12.3) to give:

$$[HO_2] = \frac{P_{HOx}k_4[RH]}{k_7k_9[NO][NO_2][M]}$$
(12.7)

Further replacement into (12.2) gives:

$$P_{O3} = \frac{2k_4 P_{HOx}[RH]}{k_9[NO_2][M]}$$
(12.8)

which indicates that O_3 production increases linearly with hydrocarbon concentrations but varies inversely with NO_x concentrations. This case is called the *hydrocarbon-limited regime* because the O_3 production rate is limited by the supply of hydrocarbons. The dependence of O_3 production on NO_x and hydrocarbons is very different between the two regimes.

Figure 12-4 Ozone concentrations (ppbv) simulated by a regional photochemical model as a function of NO_x and hydrocarbon emissions. The thick line separates the NO_x-limited (top left) and hydrocarbon-limited (bottom right) regimes. Adapted from Sillman, S., et al., *J. Geophys. Res., 95,* 1837-1852, 1990.

Figure 12-4 shows the results of a chemical model calculation where O₃ concentrations simulated over the eastern United States are plotted as a function of NO_x and hydrocarbon emissions. The thick Figure separates line on the the NO_{v} and hydrocarbon-limited regimes. To the left of the line is the NO_x-limited regime: O₃ concentrations increase with increasing NO_x and are insensitive to hydrocarbons. To the right of the line is the hydrocarbon-limited regime: O_3 concentrations increase with increasing hydrocarbons and decrease with increasing NO_x. The non-linear dependence of O₃ on precursor emissions is readily In the NO_x-limited regime, hydrocarbon emission apparent. controls are of no benefit for decreasing O₃. In the hydrocarbon-limited regime, NO_x emission controls cause an *increase* in O_3 .

Formulation of a successful strategy against O₃ pollution evidently requires a knowledge of the chemical regime for O₃ production. Successive generations of atmospheric chemistry models have been developed to address this issue. The first models developed after the 1970 Clean Air Act concluded that O₃ production was in general hydrocarbon-limited. This finding led to a strong regulatory effort to control hydrocarbon emissions from automobiles and industry. Emissions of NO_x were also controlled, due at least initially to concern over the health effects of NO_2 (a hazardous pollutant in its own right), but the effort was less than for hydrocarbon emissions. Controlling emissions has been an uphill battle because of the continuously rising population and fuel combustion per capita. Between 1980 and 1995, anthropogenic emissions of hydrocarbons in the United States decreased by 12% and NO_x emissions remained constant, a significant achievement considering that population grew by 20% and automobile usage rose by 60%. Some areas such as Los Angeles enacted even more stringent emission reduction policies than the rest of the nation.

Have these control strategies been successful? Analyses of long-term trends in O_3 concentrations over the United States for the past two decades indicate significant decreases in the Los Angeles Basin and in the New York City metropolitan area, but no significant amelioration over the rest of the country. To illustrate this point we show in Figure 12-5 the trends of 90th percentile concentrations for 1980-1995 in Pasadena (Los Angeles Basin) and Boston. Although the worst offenders of the air quality standard have shown improvement, no improvement is apparent in large

areas of the country where the standard is violated. This mixed success has caused air pollution control agencies to rethink their emission control strategies.

Figure 12-5 Long-term trends in the 90th percentile summer afternoon concentrations of O₃ in Pasadena (Los Angeles Basin) and Boston for the period 1980-1995. There is a significant decreasing trend in Pasadena (the regression line is shown) but no significant trend in Boston. The high 1988 concentrations in Boston were due to anomalously stagnant weather over the eastern United States that summer. From Fiore et al., op. cit.

An important discovery in the past decade is that the focus on hydrocarbon emission controls to combat O_3 pollution may have been partly misdirected. Measurements and model calculations now show that O_3 production over most of the United States is primarily NO_x -limited, not hydrocarbon-limited. The early models were in error in part because they underestimated emissions of hydrocarbons from automobiles, and in part because they did not account for natural emission of biogenic hydrocarbons from trees and crops. As can be seen from Figure 12-4, an upward revision of hydrocarbon emissions (upward translation along the hydrocarbon to NO_x -limited.

The principal biogenic hydrocarbon contributing to O_3 formation is isoprene, $CH_2=CH-C(CH_3)=CH_2$, an odorless compound which is a by-product of photosynthesis. Isoprene is a diene (two double bonds) and therefore reacts extremely rapidly with OH; its atmospheric lifetime is less than one hour and its decomposition can produce large amounts of O_3 and HO_x . Emission of isoprene by vegetation was discovered only in the 1960s, and reliable emission inventories were not available until the 1990s. These inventories now show that isoprene emission in the United States is larger than the sum of all anthropogenic hydrocarbon emissions; even without anthropogenic hydrocarbons, isoprene emission would be sufficient to make O_3 production NO_x -limited everywhere in the United States except in large urban centers. It appears on the basis of present knowledge that future improvements in O_3 air quality over the United States will require a vigorous program of NO_x emisssion controls.

12.3 OZONE PRODUCTION EFFICIENCY

We saw in the previous section that O_3 production in the NO_x -limited regime depends linearly on the NO_x concentration (equation (12.5)). One might hope under these conditions that a reduction in NO_x emissions would lead to a proportional decrease of O_3 production. This is however not the case. An important concept introduced in the late 1980s is the O_3 production efficiency ε , defined as the number of O_3 molecules produced per molecule of NO_x consumed:

$$\varepsilon = \frac{P_{O3}}{L_{NOx}} \tag{12.9}$$

where L_{NOx} is the loss rate of NO_x. Here ε is the chain length when NO_x is viewed as the propagating agent in the chain mechanism for O₃ production. A NO_x molecule emitted to the atmosphere undergoes a number ε of peroxy + NO reactions, producing O₃, before being converted to HNO₃ which is removed mainly by deposition (Figure 12-6).

The pespective of viewing NO_x as the propagating agent for O_3 production is different from the perspective taken in section 12.2 where HO_x was viewed as the propagating agent. Both perspectives are equally valid and yield different kinds of information, as we will now see.

Assuming steady state for NO_x as represented by Figure 12-6, the O_3 production efficiency relates the amount of NO_x emitted to the corresponding amount of O_3 produced. A simple analytical expression for ε can be obtained for the limiting case where oxidation of NO_2 by OH (*R9*) is the only sink of NO_x :

$$\varepsilon = \frac{2k_7[HO_2][NO]}{k_9[NO_2][OH]}$$
(12.10)

Assuming efficient HO_x cycling (Figure 12-3), we can replace the $[HO_2]/[OH]$ ratio using equation (12.3):

$$\varepsilon = \frac{2k_4[RH]}{k_9[NO_2]} \tag{12.11}$$

We see that the O_3 production efficiency increases with increasing hydrocarbon concentrations and decreases with increasing NO_x concentration. Increasing hydrocarbon concentrations causes OH to decrease due to (*R4*), therefore increasing the lifetime of NO_x and allowing more O_3 production per molecule of NO_x emitted. Increasing NO_x conversely causes OH to increase by (*R7*). Values of ε over the United States are typically in the range 1-20 mol/mol.

The inverse dependence of ε on $[NO_x]$ in equation (12.11) suggests somewhat incongruously that the total amount of O_3 produced from a NO_x emission source should be independent of the NO_x emission rate, since a decrease of NO_x concentration results in a compensating increase of ε . Decreasing the NO_x emission rate would slow down O₃ production, but the total amount of O₃ eventually produced would remain the same. In fact, the dependence of ε on $[NO_x]$ is not as strong as indicated by equation (12.11) due to the presence of other sinks for NO_x aside from reaction with OH (section 11.4). Also, the assumption of efficient HO_x cycling behind equation (12.3) applies only to high NO_x the negative dependence of ε on $[NO_x]$ dampens the O₃ decrease to be expected from a given reduction of NO_x emissions. Detailed models for the United States predict that a 50% reduction of NO_x emissions from fossil fuel combustion would decrease summertime O₃ concentrations by only about 15%. Achieving compliance with air quality standards may require draconian controls on NO_x emissions.

Another important application of the concept of O_3 production efficiency is to understand how changes in NO_x emissions from fossil fuel combustion might affect global tropospheric O_3 . Fossil fuel combustion accounts presently for 50% of global NO_x emissions (section 11.4), and one might be concerned that reduction of these emissions to fight O_3 pollution could have negative consequences for the oxidizing power of the atmosphere. However, most of the NO_x emitted by fossil fuel combustion is oxidized within the region of emission, where NO_x concentrations are high and ε is much less than in the remote troposphere. This NO_x makes therefore relatively little contribution to global tropospheric O_3 . Global models of tropospheric chemistry indicate that fossil fuel combustion in the United States contributes only about 5% to the global source of tropospheric O_3 even though it contributes 15% of the source of NO_x .

Further reading:

National Research Council, Rethinking the ozone problem in urban and regional air pollution, National Academy Press, Washington, DC, 1991. Review of current knowledge and outstanding issues in ozone pollution.