(2020-2021)

Remove Watermark

Mustansirivah University

College of Science Dept. of Math.

$\equiv \sim (\sim p) \land \sim q.$	De Morgan's Law
$\equiv p \land \sim q$	Double Negation Law

(ii)
$$\sim (p \lor \sim (p \land q))$$

 $\equiv \sim p \land \sim (\sim (p \land q))$ De Morgan's Law
 $\equiv \sim p \land (p \land q)$ Double Negation Law
 $\equiv (\sim p \land p) \land q$ Associative Law
 $\equiv F \land q$ Contradiction Law
 $\equiv F$ Domination Law and Commutative Law.

(iii)
$$\sim (p \lor (\sim p \land q))$$

 $\equiv \sim p \land \sim (\sim p \land q)$ De Morgan's Law
 $\equiv \sim p \land (p \lor \sim q)$ De Morgan's Law
 $\equiv \sim p \land (p \lor \sim q)$ Double Negation Law
 $\equiv (\sim p \land p) \lor (\sim p \land \sim q)$ Distribution Law
 $\equiv (p \land \sim p) \lor (\sim p \land \sim q)$ Commutative Law
 $\equiv F \lor (\sim p \land \sim q)$ Contradiction Law
 $\equiv F \lor (\sim p \land \sim q)$ Commutative Law
 $\equiv (\sim p \land \sim q) \lor F$ Commutative Law
 $\equiv (\sim p \land \sim q)$ Identity Law
(iv) $p \lor (p \land q)$

$$(iv) p \lor (p \land q)$$

$$\equiv (p \land T) \lor (p \land q) \qquad \text{Identity (in reverse)}$$

$$\equiv p \land (T \lor q) \qquad \text{Distributive (in reverse)}$$

$$\equiv p \land T \qquad \text{Domination}$$

$$\equiv p \qquad \text{Identity}$$

Example 1.4.3. Find a simple form for the negation of the proposition "If the sun is shining, then I am going to the ball game." Solution.

This proposition is of the form $p \to q$. Since $\sim (p \to q) \equiv \sim (\sim p \lor q) \equiv (p \land \sim q)$. This is the proposition "The sun is shining, and I am not going to the ball game."