التجربة (1): إيجاد التوصيلية المولارية المحددة للالكتروليتات القوية والضعيفة : $HCl-NaCl-CH_3COONa-CH_3COOH$

بالاعتماد على قانون كولراوش (kohlrausch's law)

$$\Lambda_m = \Lambda_O - A\sqrt{C}$$

يطبق قانون كولراوش على الالكتروليتات القوية لان تأينها تام.

 $\Lambda_{
m O}$ للالكتروليتات الضعيفة ومنها CH3COOH الضعيفة ومنها

 $\Lambda_{\rm O}$ (CH₃COOH) = [$\Lambda_{\rm O}$ (HCl) + $\Lambda_{\rm O}$ (CH₃COONa)] - $\Lambda_{\rm O}$ (NaCl)

طريقة العمل:

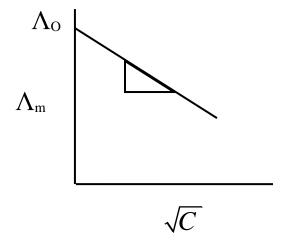
بتطبیق HCI(0.1M) من هذا الترکیز یتم تحضیر التراکیز التالیه HCI(0.1M) بتطبیق قانون التخفیف:

$$M_1 \quad V_1 = M_2 \quad V_2$$

$$0.08 * 50 = 0.1 * V_2$$

$$0.04 * 50 = 0.1 * V_2$$

$$0.02 * 50 = 0.1 * V_2$$


 $CH_3COONa~(0.1M)$ و NaCl~(~0.1~M) الخطوة لبقية المحاليل: NaCl~(~0.1~M)

Conc.(HCl)	0.08	0.04	0.02
\sqrt{C}			
k (mS. cm ⁻¹)	0.32	0.23	0.17
$\Lambda_m (mS.mol^{\text{-}1}.cm^2)$			

Conc.(NaCl)	0.08	0.04	0.02
\sqrt{C}			
k (mS. cm ⁻¹)	0.24	0.18	0.12
$\Lambda_m (mS.mol^{\text{-}1}.cm^2)$			

Conc.(CH ₃ COONa)	0.08	0.04	0.02
\sqrt{C}			
k (mS. cm ⁻¹)	0.16	0.1	0.04
$\Lambda_{\rm m}({\rm mS.mol^{-1}.cm^2})$			

