

COMPUTER
ORGANIZATION

CHAPTER Three: Data Representation

 1

Chapter Four

Data Representation

1. Introduction

The CPU processes information obtained from the primary memory

and returns the results to memory. There is usually a block of

information that the programmer sees as being processed in any one

operation and moved to or from memory. This is called a word.

A word may represent a number to be used in numerical

calculations or one or more characters of nonnumeric information. The

length of the word differs from machine to machine. On most machines,

however, a word consists of a number of bits, the most common lengths

being between 8 and 64 bits.

 The word "bit" is a contraction of "binary digit", meaning a digit

that can take one of the two values 0 or 1, just as a decimal digit can take

one of the ten values 0, 1, 2… 9. Although human beings commonly use

decimal digit to represent numbers, machines commonly use binary

digits because most physical devices used in machines can retain one of

two states most reliably, for example, an on or off switch, a positive or

negative voltage, north or south magnetization.

bit

byte
on off OR

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Three: Data Representation

 2

A word, consisting of a number of bits, may be used to represent

anything that the user cares to have it represent. Each bit of an N-bit

word can be a 0 or 1 independently, so that a word can assume any of 2N

different states. With one word, the user can represent one out of not

more than 2N different objects, such as numbers, letters, species of trees,

etc. The most common use of a word is for number and character

representation. Much of today's computer terminology reflects the fact

that, in the early days, computers handled mainly numbers. If a word

consists of N bits, it is usually drawn as figure below.

b0 b1 b2 ….... bn-1

A computer word

The bits have been numbered arbitrarily from 0 to N-1. Bit N-1 is

often referred to as the left-hand bit or most-significant bit and bit 0 as

the right-hand bit or least-significant bit. The word is referred to as

being N bit long.

When a group of bits is used to represent a number, the so-called

natural binary-coding scheme is usually employed. Because a single bit

can represent only two states, the value, or weight, of each bit or digit in

a word is a power of two–thus the bits in word, starting from the right-

hand side, include the number of 1's, 2's, 4's, 8's, etc., in the number.

Thus if 7 bits, say

0b 1b 2b 3b 4b 5b 6b

Are used to represent a number, the value of that number is

b6*26+ b5 *25+ b4 *24+ b3 *23+ b2 *22+ b1 *21+ b0 *20

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

CHAPTER Three: Data Representation

 3

 The largest value that this can take is the binary number 1111111,

representing the decimal value 127, that is

1*26+ 1 *25+ 1 *24+ 1 *23+ 1 *22+ 1 *21+ 1*20

64 + 32 + 16 + 8 + 4 + 2 + 1

127

The smallest value is the binary number 0000000, representing the

value 0. Obviously, such a representation handles positive integers only,

but one common way of handling negative numbers is to use one more

bit to indicate the sign.

This is frequently the left-most bit, with a 0 indicating a positive

number and 1 a negative number. Thus, numbers between -127 and

+127 could be representing in 8 bits, the first being used for a sign and

the remaining 7 for the magnitude of the number. This is called the sign-

magnitude system.

0 1 1 1 1 1 1 1

B7

(Sign bit)

b6 b5 b4 b3 b2 b1 b0

Represent the value +127

1 1 1 1 1 1 1 1

B7

(Sign bit)

b6 b5 b4 b3 b2 b1 b0

Represent the value -127

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Three: Data Representation

 4

2. Character Code

Besides representing numbers, words are often used to represent

nonnumeric data such as alphabetic characters. In program translation,

business data processing, and work such as the differentiation of

algebraic expressions or word-frequency studies, it is often necessary to

represent natural language text such as English or American.

To do this, each character (letter, digit, punctuation mark, etc.) is

represented by a different bit pattern. The number of bits needed to

represent a character is determined by the number of different

characters. N bit can represent up to 2N characters. For example, 64,

128, 0r 256 characters can be represented with 6, 7 or 8 bits,

respectively.

If 8 bits are used to represent each character, but the word length is

much greater than 8, say 32, it is clearly inefficient to store just one

character in each word. In this case, several characters are packed into a

word. Thus four 8-bit characters may be packed into a 32-bit word. If 6-

bit characters are used, similar packing occurs. For example, the CDC

CYBER 170 series packs ten 6-bit characters into its 60-bit word.

Modern computers need to represent more than 64 characters

because it is convenient to represent upper- and lower-case letters,

decimal digits, and a number of special characters. Because 7 turn out to

be an awkward number of bits, 8 bits are used. One such code is known

as ASCII (American Standard Code for Information Interchange). It uses

only 7 of the bits for information. Table below gives the ASCII character

set.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Three: Data Representation

 5

Bits

3 to 6

Bits 0 to 2

000 001 010 011 100 101 110 111

0000 Nul Soh Stx Etx Eot Enq Ack Bel

0001 Bs Ht Nl Vt Np Cr So Si

0010 Dte Dc1 Dc2 Dc3 Dc4 Nak Syn Etb

0011 Can Em Sub Esc Fs Gs Rs Us

0100 Sp ! " # $ % & '

0101 () * + , - .

0110 0 1 2 3 4 5 6 7

0111 8 9 : ; < = > ?

1000 @ A B C D E F G

1001 H I J K L M N O

1010 P Q R S T U V W

1011 X Y Z [\] ' _

Single character entries in this table are printable characters (on

those devices that have all such characters available). The two-letter and

three-letter entries represent control characters and other nonprinting

characters that cause various actions on typical terminals. For example,

the sp and bs represent space and back space, respectively, whereas cr

represents carriage return.

Not unusually, the largest computer manufacture has its own

standard, known as EBCDIC (Extended BCD Interchange Code). It is an

outgrowth of an earlier, very common representation of the uppercase

letters, then ten digit 0 to 9, and the twelve special characters + - * / , . ()

$ = ' and space (forty-eight characters altogether) that used 6 bit.

That code was known as the BCD code (Binary Code Decimal). With a

few variations, it was standard for many computers and could be found

in many machine manuals. The ECDIC code is an 8-bits code that can

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Three: Data Representation

 6

handle lower-case alphabetic characters and many other special

characters in addition to those in the BCD code.

3. Information

❖ Data format (data representation inside computer):

The information can be stored in the memory can be divided into:

1- Data

2- Instruction

❖ Data format:

There are several formats can used to store the data it is to operate

on. The formats may be summarized as follows:

1- Number format

A- Integer number

B- Real number

2- Alphanumeric codes

001010010100101001010101
010101010101010100101000
010111101010101010101111
111110111111101111111111
001010010100101001010101
010101010101010100101000
010111101010101010101111
111110111111101111111111

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Three: Data Representation

 7

4. Integer Number

The binary number system is the most conventional internal

representation for number in a digital computer. If there are n-bits in a

group, the number of possible combinations of 0's, and 1's is 2n

Example

If there are 8-bits, so the number of possible combinations is 28

=256. If the group of bits are used to represent the non-signed integer,

the integer number from 0 to 2 n-1 can be represented (8 bits can be

representing the non-signed integer numbers from 0 to 255).

0 0 0 0 0 0 0 0

Smallest Number

1 1 1 1 1 1 1 1

Largest Number

There are three widely used techniques for representations both

positive and negative number (signed number)

 1- sign magnitude format

 2- 1's complement format

 3- 2's complement format

❖ Signed magnitude format

A signed value (negative and positive) is written by writing its

magnitude (absolute value) and then placing a sign (1 for negative and 0

for positive) to the left of the magnitude. Therefore, if a number us to be

stored in n-bits, the magnitude is place in the n-1 rights most bits and let

the left bit indicate the sign (0 = +, 1 = -)

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight
2 اس n

CHAPTER Three: Data Representation

 8

Example:

Represent (-7, +7) in the word size equal to 6 bits by using signed

magnitude method.

represent -7

represent +7

The range of integer that can be express in a group of 8-bits by using

sign magnitude method is.

(2 n-1 -1) to + (2 n-1 -1)

(2 8-1 -1) to + (2 8-1 -1)

 (2 7 -1) to + (2 7 -1)

 (128-1) to + (128-1)

(127) to + (127)

1 1 1 0 0 1

1 1 1 0 0 0

Sign bit Magnitude

Sign bit Magnitude

Sign bit Magnitude

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

CHAPTER Three: Data Representation

 9

1 1 1 1 1 1 1 1

Large negative number

1 1 1 1 1 1 1 0

Large positive number

In general, for N-bits, the complete range that can be represented in

signed magnitude is form:

[(-2(n-1) -1) to (+2(n-1) -1]

❖ Signed 1's complement

To represent the positive number in 1's complement, the left most

bit is used to represent the positive sign (0) and the magnitude place in

(n-1) right most bits.

 To represent the negative values in 1's complement are obtained by

complementing each bit of the representation of the corresponding

positive value.

Example:

Represent -3 and -10 by using 1's complemented by using 5-bit.

To represent -3

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Three: Data Representation

 10

To represent -10

The range of integer that can express in a group of n-bits by using 1's

complement is.

(-2(n-1) -1) to (+2(n-1) -1)

Example:

What are the largest signed number and smallest signed number in 4

bits word size by using 1's complement?

Largest number = (+2(n-1) -1)

 = (+2(4 -1) -1)

 = (+2(3) -1)

 = +7

 Smallest number = (-2(n-1) -1)

 = (-2(4-1) -1)

 = (-2(3) -1)

 = -7

To represent +7 To represent -7

CHAPTER Three: Data Representation

 11

❖ Signed 2's complement

To represent the positive number in 2's complement, the left most

bit is used to represent the positive sign (0) and the magnitude place in

(n-1) right most bits. So 2's complement is like the signed magnitude

and 1's complement when represent the positive number.

Example:

Represent (-10) by using 2's complemented by using 5-bit.

To represent -10

The complete range of values of n-bits with one signed bit by using

2's complement is.

(-2(n-1)) to (+2(n-1) -1)

Example:

Represent (+10, -10) by using 2's complemented using 5-bit

 +1 2’s

1’s

2’s

1’s

 +1 2’s

1’s

CHAPTER Three: Data Representation

 12

Example:

The complete range of values of 4 bits word size with signed bit by

using 2's complement

-2(n-1) to + (2(n-1) -1)

-2(4-1) to + (2(4-1) -1)

-2(3) to + (2(3) -1)

-8 to +7

5. Real Number

❖ Fixed-Point Representation

In fixed-point representation, a specific radix point - called a decimal

point in English and written ".", is chosen so there is a fixed number of

bits to the right and a fixed number of bits to the left of the radix point.

The bits to the left of the radix point are called the integer bits. The

bits to the right of the radix point are called the fractional bits

Example:

 Assume a 16-bit fractional number with 8 magnitude bits and 8

radix bits, which is typically represented as 8.8 representations.

To encode 118.625, first find the value of the integer bits. The binary

representation of 118 is 01110110, so this is the upper 8 bits of the 16-

bit number.

The fractional part of the number is represented as 0.625 x 2n where

n is the number of fractional bits.

Integer Fractional

0 N Radix

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Three: Data Representation

 13

Because 0.625 x 256 = 160, you can use the binary representation of

160, which is 10100000, to determine the fractional bits. Thus, the

binary representation for 118.625 is 0111 0110 1010 0000.

The major advantage of using fixed-point representation for real

numbers is that fixed-point adheres to the same basic arithmetic

principles as integers.

The disadvantage of using fixed-point numbers is that fixed-point

numbers can represent only a limited range of values, so fixed-point

numbers are susceptible to common numeric computational

inaccuracies.

Example:

 Represent the real number 41.6875 by using fixed point method

01110110 10100000

0 15 7

41 ÷ 2 = 20 1

20 ÷ 2 = 10 0

10 ÷ 2 = 5 0

5 ÷ 2 = 2 1

2 ÷ 2 = 1 0

1 ÷ 2 = 0 1

(41)
10

 = (101001)
2

0.6875 * 2 = 1.3750

0.3750 * 2 = 0.7500

0.7500 * 2 = 1.5000

0.5000 * 2 = 1.000

(0.6875)
10

 = (0.1011)
2

00101001 10110000

0 15 7

41.6875 = 101001.1011

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Three: Data Representation

 14

❖ 2-Floating-Point Representation

Using 32 bits to represent a number, positive or negative, the range

of possible values is large but there are circumstances when bigger

number representations are needed. The way to do this is to use floating

point numbers.

The reason for using floating point representation is that the range of

possible values is much greater.

Floating point representation is similar to scientific notation and

details of how values are represented vary from one machine to another.

The number uses a 32-bit string. This string has 3 distinct parts:

Mantissa Exponent Sing of fraction

1 bit. With the value 1 for

negative and 0 for positive.
The sign bit

8 bits The exponent

23 bits The mantissa

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight
العشري

lenovo
Highlight

CHAPTER Three: Data Representation

 15

Example:

 Represent the number (- 435.25)10 in a float point number.

1- The binary representation of (- 435.25)10 = -110110011.01

2- Sign bit 1 negative.

3- The mantissa is the number begins encoded. Before the number is

encoded the point is moved or floated left or right until the value of the

number is in range (1 < n < 2).

This is known as normalization. Since the first digit is now always

going to be 1 there is no need to encode this digit. The mantissa only

includes the digits after the point and the leading 1 is assumed.

The number in un-normalized form is -110110011.01

The number in normalization form is -1.1011001101 * 28

4- The exponent is shown with excess 127. This means that the

machine exponent is the actual exponent with 127 added. This has the

effect of giving a range of 0 to 255 for the machine representation while

the range of actual values is -128 to +127. If the excess was not used

there would have to be a mechanism for showing a negative exponent.

In the example the actual exponent is 1000 (decimal 8). The machine

representation is:

0000 1000 (8) + 0111 1111 (127) = 1000 0111 (decimal 135)

Mantissa Exponent Sign

10110011010000000000000 10000111 1

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight
1<n<2

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Three: Data Representation

 16

Example:

Represent the number (5.890625)10 in a float point number.

1- The binary number (5.890625)10 = (101.111001)2

2- The sign bit is 0 for positive.

3- Move the point 2 places to the left:

1.01111001 * 22 the digits after the point are the mantissa.

4- The exponent will be (2 + 127 = 129)10 convert this number to

binary will be (10000001)2

Mantissa Exponent Sign

011110010000000000000 10000001 0

lenovo
Highlight

	cover.pdf
	Chapter Four.pdf

