

COMPUTER
ORGANIZATION

CHAPTER Two: Processing Unit Design

 1

Chapter Three

Instruction Set Architecture and Design

1. INSTRUCTION MNEMONICS AND SYNTAX

Assembly language is the symbolic form of machine language.

Assembly programs are written with short abbreviations called

mnemonics.

A mnemonic is an abbreviation that represents the actual machine

instruction.

Assembly language programming is the writing of machine

instructions in mnemonic form, where each machine instruction (binary

or hex value) is replaced by a mnemonic.

An assembly program consists of a sequence of assembly statements,

where statements are written one per line. Each line of an assembly

program is split into the following four fields: label, operation code

(opcode), operand, and comments.

Labels are used to provide symbolic names for memory addresses. A

label is an identifier that can be used on a program line in order to

branch to the labeled line.

The operation code (opcode) field contains the symbolic

abbreviation of a given operation.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 2

The operand field consists of additional information or data that

the opcode requires. The operand field may be used to specify constant,

label, immediate data, register, or an address.

The comments field provides a space for documentation to explain

what has been done for the purpose of debugging and maintenance.

The label of the instruction LD X is START, which means that it is the

memory address of this instruction.

2. MEMORY LOCATIONS AND OPERATIONS

The (main) memory can be modeled as an array of millions of

adjacent cells, each capable of storing a binary digit (bit), having value of

1 or 0.

These cells are organized in the form of groups of fixed number, say

n, of cells that can be dealt with as an atomic entity.

An entity consisting of 8 bits is called a byte. In many systems, the

entity consisting of n bits that can be stored and retrieved in and out of

the memory using one basic memory operation is called a word (the

smallest addressable entity).

Typical size of a word ranges from 16 to 64 bits. It is, however,

customary to express the size of the memory in terms of bytes. For

example, the size of a typical memory of a personal computer is 256

Mbytes, that is, 256 x 220 = 228 bytes.

there are two basic memory operations. These are the memory

write and memory read operations.

A memory write operation a word is stored into a memory location

whose address is specified.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 3

A memory read operation a word is read from a memory location

whose address is specified.

Typically, memory read and memory write operations are

performed by the central processing unit (CPU).

Three basic steps are needed in order for the CPU to perform a write

operation into a specified memory location:

1. The word to be stored into the memory location is first loaded by

the CPU into a specified register, called the memory data register (MDR).

2. The address of the location into which the word is to be stored is

loaded by the CPU into a specified register, called the memory address

register (MAR).

3. A signal, called write, is issued by the CPU indicating that the word

stored in the MDR is to be stored in the memory location whose address

in loaded in the MAR.

Similar to the write operation, three basic steps are needed in order

to perform a memory read operation:

1. The address of the location from which the word is to be read is

loaded into the MAR.

2. A signal, called read, is issued by the CPU indicating that the word

whose address is in the MAR is to be read into the MDR.

3. After some time, corresponding to the memory delay in reading

the specified word, the required word will be loaded by the memory into

the MDR ready for use by the CPU.

It is worth mentioning that the MDR and the MAR are registers used

exclusively by the CPU and are not accessible to the programmer.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 4

Illustration of the memory write operation

Illustration of the memory read operation

CHAPTER Two: Processing Unit Design

 5

❖ The Fetch-Decode-Execute Cycle

The fetch-decode-execute cycle represents the steps that a computer

follows to run a program.

Fetches: transfers instruction from main memory to the instruction

register.

 Decodes: determines the opcode and fetches any data necessary to

carry out the instruction.

Executes: performs the operation(s) indicated by the instruction.

 Notice that a large part of this cycle is spent copying data from one

location to another. When a program is initially loaded, the address of

the first instruction must be placed in the PC. The steps in this cycle are

listed below. Note that Steps 1 and 2 make up the fetch phase, Step 3

makes up the decode phase, and Step 4 is the execute phase.

1- Copy the contents of the PC to the MAR: MAR PC.

2- Go to main memory and fetch the instruction found at the address

in the MAR, placing this instruction in the IR; increment PC by 1 (PC now

points to the next instruction in the program):

IR M[MAR]

PC PC+1.

Note: Because MARIE is word-addressable, the PC is incremented by

one, which results in the next word’s address occupying the PC. If MARIE

were byte- addressable, the PC would need to be incremented by 2 to point

to the address of the next instruction, because each instruction would

require two bytes. On a byte-addressable machine with 32-bit words, the

PC would need to be incremented by 4.

3- Copy the rightmost 12 bits of the IR into the MAR; decode the

leftmost four bits to determine the opcode, MAR IR[11–0], and

decode IR[15–12].

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 6

4- If necessary, use the address in the MAR to go to memory to get

data, placing the data in the MBR, and then execute the instruction

MBR M[MAR]

 and execute the actual instruction

The Fetch-Decode-Execute Cycle

Start

Yes Instruction

requires
operand?

No

Copy the contents of
memory at address

MAR to MBR

Execute the
instruction

Decode the instruction and
place bits IR[11-0] in

MAR

Copy the contents of
memory at address

MAR to IR;

Increment PC by 1

Copy the PC to
the MAR

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 7

3. ADDRESSING MODES

Information involved in any operation performed by the CPU needs

to be addressed. In computer terminology, such information is called the

operand.

Any instruction issued by the processor must carry at least two types

of information. These are the operation to be performed, encoded in

what is called the op-code field, and the address information of the

operand on which the operation is to be performed, encoded in what is

called the address field.

Instructions can be classified based on the number of operands as:

three-address, two-address, one-and-half-address, one-address, and zero-

address.

❖ Three-Address Machines

In three-address machines, instructions carry all three addresses

explicitly. Most current processors use three addresses.

A = B + C * D - E + F + A

is converted to the following code:

MULT T,C,D ; T = C*D

ADD T,T,B ; T = B + C*D

SUB T,T,E ; T = B + C*D - E

ADD T,T,F ; T = B + C*D - E + F

❖ Two-Address Machines

In two-address machines, one address doubles as a source and

destination. Usually, we use dest to indicate that the address is used for

destination. But you should note that this address also supplies one of

the source operands.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 8

A = B + C * D - E + F + A

is converted to the following code:

LOAD T,C ; T = C

MULT T,D ; T = C*D

ADD T,B ; T = B + C*D

SUB T,E ; T = B + C*D - E

ADD T,F ; T = B + C*D - E + F

ADD A,T ; A = B + C*D - E + F + A

❖ One-Address Machines

In the early machines, when memory was expensive and slow, a

special set of registers was used to provide one of the input operands as

well as to receive the result of the operation.

Because of this, these registers are called the accumulators. In most

machines, there is just a single accumulator register. This kind of design,

called the accumulator machines.

A = B + C * D - E + F + A

is converted to the following code:

LOAD C ;AccC

MULT D ;Acc= Acc * D

ADD B ;Acc=Acc + B

SUB E ;Acc=Acc – E

ADD F ;Acc=Acc + F

ADD A ;Acc=Acc + A

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 9

❖ Zero-Address Machines

In zero-address machines, the locations of both operands are

assumed to be at a default location. These machines use the stack as the

source of the input operands and the result goes back into the stack.

Stack is a LIFO (last-in–first-out) data structure that all processors

support.

A stack is a data organization mechanism in which the last data item

stored is the first data item retrieved. Two specific operations can be

performed on a stack. These are the push and the pop operations.

As can be seen, a specific register, called the stack pointer (SP), is

used to indicate the stack location that can be addressed. In the stack

push operation, the SP value is used to indicate the location (called the

top of the stack) in which the value (5A) is to be stored (in this case it is

location 1023). After storing (pushing) this value the SP is incremented

to indicate to location 1024.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 10

In the stack pop operation, the SP is first decremented to become

1021. The value stored at this location (DD in this case) is retrieved

(popped out) and stored in the shown register.

Different operations can be performed using the stack structure.

Consider, for example, an instruction such as ADD (SP)+,(SP). The

instruction adds the contents of the stack location pointed to by the SP

to those pointed to by the SP+1 and stores the result on the stack in the

location pointed to by the current value of the SP.

Addition using the stack

All operations on this type of machine assume that the required

input operands are the top two values on the stack. The result of the

operation is placed on top of the stack.

A = B + C * D - E + F + A

is converted to the following code:

PUSH A ;Stack A

PUSH F ;Stack F

PUSH E ;Stack E

PUSH B ;Stack B

PUSH D ;Stack D

PUSH C ;Stack C

MULT

ADD

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Two: Processing Unit Design

 11

SUB

ADD

ADD

POP A ;A TopS

The different ways in which operands can be addressed are called

the addressing modes. Addressing modes differ in the way the address

information of operands is specified.

a. Immediate Mode

According to this addressing mode, the value of the operand is

(immediately) available in the instruction itself.

For example, the case of loading the decimal value 1000 into a

register Ri. This operation can be performed using an instruction such as

the following: LOAD #1000, Ri. In this instruction, the operation to be

performed is to load a value into a register.

It is customary to prefix the operand by the special character (#)

b. Direct (Absolute) Mode

According to this addressing mode, the address of the memory

location that holds the operand is included in the instruction.

For example, the case of loading the value of the operand stored in

memory location 1000 into register Ri. This operation can be performed

using an instruction such as LOAD 1000, Ri. In this instruction, the

source operand is the value stored in the memory location whose

address is 1000, and the destination is the register Ri.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Two: Processing Unit Design

 12

Illustration of the direct addressing mode

c. Indirect Mode

In the indirect mode, what is included in the instruction is not the

address of the operand, but rather a name of a register or a memory

location that holds the (effective) address of the operand. In order to

indicate the use of indirection in the instruction, it is customary to

include the name of the register or the memory location in parentheses.

For example, the instruction LOAD (1000), Ri. This instruction has

the memory location 1000 enclosed in parentheses, thus indicating

indirection. The meaning of this instruction is to load register Ri with

the contents of the memory location whose address is stored at memory

address 1000.

Because indirection can be made through either a register or a

memory location, therefore, we can identify two types of indirect

addressing. These are register indirect addressing, if a register is used

to hold the address of the operand, and memory indirect addressing, if

a memory location is used to hold the address of the operand.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 13

Illustration of the indirect addressing mode

d. Indexed Mode

In this addressing mode, the address of the operand is obtained by

adding a constant to the content of a register, called the index register.

For example, the instruction LOAD X(Rind), Ri. This instruction loads

register Ri with the contents of the memory location whose address is

the sum of the contents of register Rind and the value X.

Index addressing is indicated in the instruction by including the

name of the index register in parentheses and using the symbol X to

indicate the constant to be added.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Two: Processing Unit Design

 14

Illustration of the indexed addressing mode

e. Relative Mode

Recall that in indexed addressing, an index register, Rind, is used.

Relative addressing is the same as indexed addressing except that the

program counter (PC) replaces the index register.

For example, the instruction LOAD X(PC), Ri loads register Ri with the

contents of the memory location whose address is the sum of the

contents of the program counter (PC) and the value X.

Illustration of relative addressing mode

f. Autoincrement Mode

This addressing mode is similar to the register indirect addressing

mode in the sense that the effective address of the operand is the

content of a register, call it the autoincrement register, that is included in

the instruction.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 15

However, with autoincrement, the content of the autoincrement

register is automatically incremented after accessing the operand.

for example, the instruction LOAD (Rauto)+, Ri. This instruction loads

register Ri with the operand whose address is the content of register

Rauto. After loading the operand into register Ri, the content of register

Rauto is incremented, pointing for example to the next item in a list of

items.

Illustration of the autoincrement addressing mode

g. Autodecrement Mode

Similar to the autoincrement, the autodecrement mode uses a

register to hold the address of the operand.

However, in this case the content of the autodecrement register is

first decremented and the new content is used as the effective address of

the operand.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 16

For example, the instruction LOAD -(Rauto), Ri. This instruction

decrements the content of the register Rauto and then uses the new

content as the effective address of the operand that is to be loaded into

register Ri.

Illustration of the autodecrement addressing mode

Radyia
Highlight

CHAPTER Two: Processing Unit Design

 17

4. INSTRUCTION TYPES

Instructions can in general be classified as in the following

Subsections:

❖ Data Movement Instructions

Data movement instructions are used to move data among the

different units of the machine.

A simple register to register movement of data can be made through

the instruction

MOVE Ri, Rj

Radyia
Highlight

Radyia
Highlight

CHAPTER Two: Processing Unit Design

 18

This instruction moves the content of register Ri to register Rj. The

effect of the instruction is to override the contents of the (destination)

register Rj without changing the contents of the (source) register Ri.

Data movement instructions include those used to move data to

(from) registers from (to) memory. These instructions are usually

referred to as the load and store instructions, respectively. Examples of

the two instructions are

LOAD 25838, Rj
STORE Ri, 1024

❖ Arithmetic and Logical Instructions

Arithmetic and logical instructions are those used to perform

arithmetic and logical manipulation of registers and memory contents.

Examples of arithmetic instructions include the ADD and SUBTRACT

instructions. These are

ADD R1, R2, R0

SUBTRACT R1, R2, R0

The first instruction adds the contents of source registers R1 and R2

and stores the result in destination register R0.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 19

The second instruction subtracts the contents of the source registers

R1 and R2 and stores the result in the destination register R0.

The contents of the source registers are unchanged by the ADD and

the SUBTRACT instructions.

Some machines have MULTIPLY and DIVIDE instructions. These two

instructions are expensive to implement and could be substituted by the

use of repeated addition or repeated subtraction. Therefore, most

modern architectures do not have MULTIPLY or DIVIDE instructions on

their instruction set.

Logical instructions are used to perform logical operations such as

AND, OR, SHIFT, COMPARE, and ROTATE. As the names indicate, these

instructions perform, respectively, and, or, shift, compare, and rotate

operations on register or memory contents.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

CHAPTER Two: Processing Unit Design

 20

❖ Sequencing Instructions

Control (sequencing) instructions are used to change the sequence in

which instructions are executed.

They take the form of CONDITIONAL BRANCHING (CONDITIONAL

JUMP), UNCONDITIONAL BRANCHING (JUMP), or CALL instructions.

A common characteristic among these instructions is that their

execution changes the program counter (PC) value. The change made in

the PC value can be unconditional.

On the other hand, the change made in the PC by the branching

instruction can be conditional based on the value of a specific flag.

Examples of these flags include the Negative (N), Zero (Z), Overflow

(V), and Carry (C). These flags represent the individual bits of a specific

register, called the CONDITION CODE (CC) REGISTER. The values of flags

are set based on the results of executing different instructions.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Two: Processing Unit Design

 21

 For example, the following group of instructions.

LOAD #100, R1

Loop: ADD (R2) , R0

DECREMENT R1

BRANCH-IF-GREATER-THAN Loop

The fourth instruction is a conditional branch instruction, which

indicates that if the result of decrementing the contents of register R1 is

greater than zero, that is, if the Z flag is not set, then the next instruction

to be executed is that labeled by Loop. It should be noted that

conditional branch instructions could be used to execute program loops.

The CALL instructions are used to cause execution of the program to

transfer to a subroutine.

A CALL instruction has the same effect as that of the JUMP in terms of

loading the PC with a new value from which the next instruction is to be

executed.

However, with the CALL instruction the incremented value of the PC

(to point to the next instruction in sequence) is pushed onto the stack.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Two: Processing Unit Design

 22

Execution of a RETURN instruction in the subroutine will load the PC

with the popped value from the stack. This has the effect of resuming

program execution from the point where branching to the subroutine

has occurred.

❖ Input/output Instructions

Input and output instructions (I/O instructions) are used to transfer

data between the computer and peripheral devices.

The two basic I/O instructions used are the INPUT and OUTPUT

instructions. The INPUT instruction is used to transfer data from an

input device to the processor.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Two: Processing Unit Design

 23

H.W. Consider a computer that has a number of registers such that

the three registers R0 = 1500, R1 = 4500, and R2 1000. Show the

effective address of memory and the registers’ contents in each of the

following instructions (assume that all numbers are decimal).

(a) ADD (R0), R2

(b) SUBTRACT 2 (R1), R2

(c) MOVE 500(R0), R2

(d) LOAD #5000, R2

(e) STORE R0, 100(R2)

5. PERFORMANCE MEASURES

Performance analysis should help answering questions such as how

fast can a program be executed using a given computer? In order to

answer such a question, we need to determine the time taken by a

computer to execute a given job. We define the clock cycle time as the

time between two consecutive rising (trailing) edges of a periodic clock

signal.

Clock signal

Clock cycles allow counting unit computations, because the storage

of computation results is synchronized with rising (trailing) clock edges.

The time required to execute a job by a computer is often expressed in

terms of clock cycles.

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Two: Processing Unit Design

 24

Tt: - the clock time

Tt= 1/f.

Where f is CPU clock frequency

Each instruction has different number of clock cycle. The CPU can do

one of the following:

- Fetch instruction (3 T)

T1: PC➔MAR

T2: WMFC (Wait Memory Function Complete)

T3: IDMDR

- Read data from memory (3 T)

T1: address➔MAR

T2: WMFC

T3: RegisterMDR

- Write data to memory (3 T)

T1: address➔MAR

T2: Register➔MDR

T3: WMFC

Examples:

MOV AL, BL, this instruction is 2 bytes, and need 2 clock cycle, 6 T:

1- Fetch opcode

2- Read operand

MOV AX, [2000], this instruction is 4 bytes, and need 4 clock cycle, 12

T:

1- Fetch opcode

2- Read operand

3- Read 1st data

4- Read 2nd data

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

CHAPTER Two: Processing Unit Design

 25

These examples assume that the memory time is equal to CPU time.

If the memory time is slower than CPU time, that mean we need to wait

memory in every access to it (TW).

Suppose that the memory time is double time for CPU, that mean any

access to memory need one (TW), for the same examples:

MOV AL, BL, this instruction is 2 bytes, and need 4 clock cycle, 8 T:

1- Fetch opcode

2- Read operand

MOV AX, [2000], this instruction is 4 bytes, and need 4 clock cycle, 16

T:

1- Fetch opcode

2- Read operand

3- Read 1st data

4- Read 2nd data

 T1 T2 T3

Fetch clock cycle without wait

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight
2

CHAPTER Two: Processing Unit Design

 26

 T1 TW T3 T4

Fetch clock cycle with wait

Example:

Compute time required to execute the instruction (MOV AX, BX) in

CPU with f= 1MHz.

Sol.

Tt= 1/f = 1/ 106 = 10-6 = 1ɱs

MOV AX, BX is 2 bytes, 2 clock cycle: Fetch (3 T) and Read (3 T)

Execution time = No. of T × Tt= 6 × 1= 6 ɱs

Example:

Compute time required to execute the instruction (MOV AX, BX) in

CPU with f= 1MHz and memory time is 1.5ɱs.

Sol.

Tt= 1/f = 1/ 106 = 10-6 = 1ɱs

Because memory is slower than CPU then each access to memory

need 1 TW

MOV AX, BX is 2 bytes, 2 clock cycle: Fetch (4 T) and Read (4 T)

Execution time = No. of T × Tt= 8× 1= 8 ɱs

Radyia
Highlight

Radyia
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

	cover.pdf
	Chapter Three.pdf

