Object Oriented Programming

Encapsulation 2

Static Class, Methods, Constructors, Fields

static means something which cannot be instantiated.
You cannot create an object of a static class and
cannot access static members using an object.

classes, variables, methods, properties, operators,
events, and constructors can be defined as static
using the static modifier keyword.

1 - i peaiiveall aalad) — G gulall asle and - (o) Tl Alayall — 2L daaall - acdd Cpuen 2

Static Class

Apply the static modifier before the class name and after the access modifier to

make a class static. The following defines a static class with static fields and
methods.

Example: C# Static Class

public static class Calculator

{
private static int resultStorage = 0O;
public static string rtype = "Arithmetic";

public staticint ~ Sum(int num1, int num2)
{ return numl + numz2,
}
public static void Store(int result)
{ resultStorage = result;

}
}

D -y peaiiveal) Faalall — gulall agle and - (lse) At Ala el — ALSH Rna) - anld G 2

the Calculator class is a static. All the members of it are also
static.

You cannot create an object of the static class; therefore the
members of the static class can be accessed directly using a
class name like ClassName.MemberName, as shown below.
Accessing Static Members

class Program

{

static void Main(string[] args)

{
var result = Calculator.Sum(10, 25); // calling static method
Calculator.Store(result);
var calcType = Calculator.Type; // accessing static variable
Calculator.Type = "Scientific";//assign value to static variable

}
}

3 - Ay peaitoad) Loalall - gulal pgle o - ((lose) Al Alsyall - AL dma) - ol on 3

Rules for Static Class

*Static classes cannot be instantiated.

All the members of a static class must be static; otherwise the compiler
will give an error.

*A static class can contain static variables, static methods, static
properties, static operators, static events, and static constructors.

A static class cannot contain instance members and constructors.
*lndexers and destructors cannot be static

evar cannot be used to define static members. You must specify a type
of member explicitly after the static keyword.

*Static classes are sealed class and therefore, cannot be inherited.

A static class cannot inherit from other classes.

«Static class members can be accessed
using ClassName.MemberName.

A static class remains in memory for the lifetime of the application
domain in which your program resides.

4 - iy paiiveall Gaalall — G gulal) ale and - ((ilse) Al Al el — ALSH Al - anld G 2

Static Members in Non-static Class

The normal class (non-static class) can contain one or
more static methods, fields, properties, events and other
non-static members.

Static Fields

Static fields in a non-static class can be defined using
the static keyword.

Static fields of a non-static class Is shared across all
the instances. So, changes done by one Iinstance
would reflect in others.

5 -y yeaiinal) daelall — Cgulall o gl and - (le) Al Ala el — ALY Rna) - anld G 2

Example: Shared Static Fields

public class StopWatch

{
public static int InstanceCounter = 0; // instance constructor
public StopWatch()

{
}
}
class Program

{

static void Main(string[] args)

{

StopWatch swl = new StopWatch();

StopWatch sw2 = new StopWatch();
Console.WriteLine(StopWatch.NoOfinstances); //2
StopWatch sw3 = new StopWatch();

StopWatch sw4 = new StopWatch();
Console.WriteLine(StopWatch.NoOfinstances);//4

}
}

6 - G peaiieal) Faalall — gl all agle and - ((lse) Al Ala el — ALSH Zna i) - anld G 2

Static Methods

You can define one or more static methods in a
non-static class. Static methods can be called
without creating an object. You cannot call static
methods using an object of the non-static class.
The static methods can only call other static
methods and access static members. You
cannot access non-static members of the class
IN the static methods.

7 - i) daelall — Cgulall o gl and - (lae) At Ala el — ALSH Rna) - anld G 3

class Program
{ static int counter = 0O;
string name = "Demo Program";
static void Main(string[] args)
{ counter++; // can access static fields
Display("Hello World!"); // can call static methods
name = "New Demo Program"; //Error. cannot access non-
static members
SetRootFolder("C:\MyProgram"); //Error. cannot call non-
static method
}
static void Display(string text)
{ Console.WriteLine(text);

}
public void SetRootFolder(string path)

{1}
}

8 - G peaiiveal) Aaalall — gl all agle and - (lse) At Ala el — ALSH Fna) - anld G 2

Rules for Static Methods

eStatic methods can be defined using the static keyword
before a return type and after an access modifier.

eStatic methods can be overloaded but cannot be
overridden.

eStatic methods can contain local static variables.

eStatic methods cannot access or call non-static
variables unless they are explicitly passed as parameters.

9 - i eaiieal) Aaalall — gl all agle and - (lse) Al Ala el — ALSH Zna i) - anld G 2

Static Constructors

A non-static class can contain a parameterless
static constructor. It can be defined with the
static keyword and without access modifiers
like public, private, and protected.

The following example demonstrates the
difference Dbetween static constructor and
Instance constructor.

10 - fu_peaiiveal] Gaalall — o gulall gl and - (lse) Al Ala el — ALSH el - auld G 2

Example: Static Constructor vs Instance Constructor
public class StopWatch
{ [/ static constructor
static StopWatch()
{ Console.WriteLine("Static constructor called");
} // Instance constructor
public StopWatch()
{ Console.WriteLine("Instance constructor called");
} /] static method
public static void DisplayInfo()
{ Console.WriteLine("Displaylnfo called");
} // Instance method
public void Start()
{} [/linstance method
public void Stop()

{}
}

11 - A yeativel Al — o gulall asle and - ((hosa) Auslil) Ala) — AL Anal) - asld (pum 3

Above, the non-static class StopWatch contains a static
constructor and also a non-static constructor.

The static constructor is called only once whenever the static
method is used or creating an instance for the first time. The
following example shows that the static constructor gets called
when the static method called for the first time. Calling the
static method second time onwards won't call a static
constructor.

Example: Static Constructor Execution
StopWatch.Displaylnfo(); // static constructor called
hereStopWatch.Displaylnfo(); // none of the constructors called here

Output:

Static constructor called.
DisplayInfo called
DisplayInfo called

12 - iy peaitiveal] Gaalall — G gulall gl and - (bse) Al Ala el — ALSH Aaaal) - auld o 2

The following example shows that the static constructor gets called when
you create an instance for the first time.

StopWatch swl = new StopWatch(); // First static constructor and then
iInstance constructor called StopWatch sw2 = new StopWatch(); // only
Instance constructor called StopWatch.Displaylnfo();

Output:

Static constructor called

instance constructor called

instance constructor called

Displayinfo called

13 - i peaiiveall Gaalall — o gulall gl and - (bise) Al Al el — ALSH el - audld G 2

Rules for Static Constructors

*The static constructor is defined using the static keyword and
without using access modifiers public, private, or protected.

A non-static class can contain one parameterless static
constructor. Parameterized static constructors are not allowed.

«Static constructor will be executed only once in the lifetime.
So, you cannot determine when it will get called in an
application if a class is being used at multiple places.

A static constructor can only access static members. It cannot
contain or access instance members.

Static members are stored in a special area in the memory
called High-Frequency Heap. Static members of non-static
classes are shared across all the instances of the class. So,
the changes done by one instance will be reflected in all the
other instances.

14 - iy poaitoad) Toalall — Cpulal o gle o - (lose) Al Al yall — A& da) -l pon >

Static Members In A Class

The members of the class can be declared static using
the static keyword. When an object is declared as static,
Irrespective of the number of objects created there will be
only one copy of the static object.

Being static implies that there will be a single instance of
the member that will exist for a given class. It means that
the value of the static function or variables inside the
class can be invoked without creating an object for them.
Static variables are used for declaring constants as their
values can be obtained directly by invoking the class
rather than creating an instance of it.

15 - iy peativeall Gaalall — o gulal) sl and - ((lse) Al Ala el — ALSH el - audld G 2

1 public class Details

2 A

3 public static void stat () {

4 Console.WriteLine ("Static method invoked");
5 }

o}

I public class Program
8

9 public static void Main(string[] args)
10 {

11 Details.stat();
12 }

13}
The output of the following program will be:

Static method invoked

16 - u_peaaiiveall Gaalall — o gulall gl and - ((bse) Al Al el — ALSH Anaal) - audld G 2

In the example, we have created a class “Details” that
contains a static method “stat”. We have another class
“Program” that contains the main method. In our
previous topics, we saw, how we can initialize a class
to access methods. But as we discussed, the static
members of the class can be accessed with class
object initialization.

Thus, Iin the main method, we have just invoked the
method using the class directly without creating any
object. The output of the program executed the code
written inside the static method. In this case, we have
printed a message to the console.

17 - i peativeal] Gaalall — o gulal) ol and - (lise) Al Ala el — BLSH el - audld G 2

Static Class

A static class is similar to a normal class in C#. The
static class can have only static members and it
cannot be instantiated. A static class is used to make
sure that the class is not instantiated. A static class is
declared by using the keyword static before the
keyword class during the declaration.

18 - u_peaiiveall Gaalall — o gulall ol and - (ilise) Al Ala el — ALSH Anapal) - audld o 2

1 public static class Details
2 A

3 public static voidmultiply (int a, int b) {

4 int ¢ = a*b;

5 Console.WritelLine ("Multiplication result is: "+c);
6 }

7}

8 public class Program

9 {

10 public static void Main (string[] args)
11 {

12 Details.multiply (2, 8);

13 }

14 }

The output of the following program will be:
Multiplication result is: 16

19 - i peaiiveall Gaalall — o gulall gl and - ((bise) Al Al el — BLSH el - audld o 2

In the example, we have created a static class “Details” and
Inside the static class we have created another static method
“multiply”. Inside the method, we have some code snippets that
we want to execute. We also have another class “Program”
with the main method.

Inside the main method, we have invoked the multiply method
present inside the static class. If you look at our main method
you will see that we have not initialized or created an object for
the static class instead we have directly invoked the class from
the main method.

Thus, when we directly invoke the multiply method using the
class name and by providing parameters, it executes the code
and prints the output.

20 - A i) dnalall — Cgulall agle and - (hoe) Al Alajal) — AL Aaa il - anld a3

Program static

21 - A peaitead) Al - plal pgle e - (hose) Al Al yall — AL dna) - il e

Google Classroom :

OOP 2020-2021

