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Problem Solving
By Intelligent

Search

Problem solving requires two prime considerations: first representation of the
problem by an appropriately organized state space and then testing the existence of a
well-defined goal state in that space. Identification of the goal state and
determination of the optimal path, leading to the goal through one or more transitions
from a given starting state, will be addressed in this chapter in sufficient details. The
chapter, thus, starts with some well-known search algorithms, such as the depth first
and the breadth first search, with special emphasis on their results of time-and space
complexity. It then gradually explores the ‘heuristic search’ algorithms, where:the
order of visiting the states in a search space is supported by thumb rules, called
heuristics, and demonstrates their applications in complex problem solving. It also
discusses some intelligent search algorithms for game playing.

Introduction

We have already come across some of the problems that can be solved by
intelligent search. For instance, the well-known water-jug problem, the number
puzzle problem and the missionaries-cannibals problem are ideal examples of
problems that can be solved by intelligent search. Common experience reveals
that a search problem is associated with two important issues: first ‘what to
search’ and secondly ‘where to search’. The first one is generally referred to as
‘the key’, while the second one‘is termed “search space’. In Al the search space
Is generally referred to as a collection of states and is thus called state space.
Unlike common search space, the state space in

most of the problems in Alis not completely known, prior to solving the
problem. So, solving a problem in Al calls for two phases: the generation of the
space of states and the searching of the desired problem state in that space.
Further, since'the whole state space for a problem is quite large, generation of
the whole space prior to search may cause a significant blockage of storage,
leaving a little for the search part. To overcome this problem, the state space is
expanded in.steps and the desired state, called “the goal”, is searched after each
incremental expansion of the state space.

To successfully design and implement search algorithms, a programmer must
be able
to analyze and predict the behavior of the problem. Questions that need to be
answered include:
e |sthe problem solver guaranteed to find a solution?
e Will the problem solver always terminate? Can it become caught in an
infinite loop?
e When a solution is found, is it guaranteed to be optimal?
e What is the complexity of the search process in terms of time usage?
Memory usage?
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e How can the interpreter most effectively reduce search complexity?
e How can an interpreter be designed to most effectively utilize a
representation Language?

The theory of state space search is our primary tool for answering these
questions. By representing a problem as a state space graph, we can use graph
theory to analyze the structure and complexity of both the problem and the
search procedures that we employ to solve it.

A graph consists of a set of nodes and a set of arcs or links connecting pairs

of nodes. In the state space model of problem solving, the nodes of a graph are
taken to represent discrete states in a problem-solving process, such as the
results of logical inferences or the different configurations of agame board.
The arcs of the graph represent transitions between states. These transitions
correspond to logical inferences or legal moves of a game.’In expert systems,
for example, states describe our knowledge of a problem.instance at some stage
of a reasoning process. Expert knowledge, in the form of if.. . . then rules,
allows us to generate new information; the act of applying-a.rule is represented
as an arc between states.
Graph theory is our best tool for reasoning about the structure of objects and
relations; indeed, this is precisely the need that led'to its creation in the early
eighteenth century. The Swiss mathematician Leonhard Euler invented graph
theory to solve the “bridges of Konigsberg problem.” The city of Konigsberg
occupied both banks and two islands of a river. The islands and the riverbanks
were connected by seven bridges, as-indicated in Figure (5-1).

Riverbank 1

Riverbank 2

Figure (5-1): The city of Konigsberg
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Figure (5-2): Graph of the Konigsberg bridge system.

The bridges of Konigsberg problem asks if there is a walk around the city that
crosses each bridge exactly once. Although the residents had failed to find such
a walk and doubted that it was possible, no one had proved its impossibility.
Devising a form of graph theory, Euler created an alternative representation for
the map, presented in Figure 6.2. The riverbanks (rbl and rb2) and islands (il
and i12) are described by the nodes of a graph; the bridges are represented by
labeled arcs between nodes (b1, b2, , b7 ). The graph representation preserves
the essential structure of the bridge system, while ignoring extraneous features
such as bridge lengths, distances, and order of bridges in the walk.
Alternatively, we may represent the Konigsberg bridge system using predicate
calculus. The connect predicate corresponds to an arc of the graph, asserting
that two land masses are connected by a particular bridge«Each bridge requires
two connect predicates, one for each direction in which the bridge may be
crossed. A predicate expression, connect(X, Y, Z) =.connect (Y, X, 2),
indicating that any bridge can be crossed in either ‘direction, would allow
removal of half the following connect facts:

connect(i1, i2, b1)

connect(rb1, i1, b2)
connect(rb1, i1, b3)
connect(rb1, i2, b4)
connect(rb2, i1, b5)
connect(rb2, i1, bB)
connect(rb2, i2, b7)

connect(i2, i1, b1)

connect(i1, rb1, b2)
connect(i1, rb1, b3)
connect(i2, rb1, b4)
connect(i1, rb2, b5)
connect(i1, rb2, bg)

connect(i2, rb2, b7)

The predicate ‘calculus representation is equivalent to the graph representation
in that the connectedness is preserved. Indeed, an algorithm could translate
between the two representations with no loss of information. However, the
structure of the problem can be visualized more directly in the graph
representation, whereas it is left implicit in the predicate calculus version.
Euler’s proof illustrates this distinction.

In proving that the walk was impossible, Euler focused on the degree of the
nodes of the graph, observing that a node could be of either even or odd degree.
An even degree node has an even number of arcs joining it to neighboring
nodes. An odd degree node has an odd number of arcs. With the exception of
its beginning and ending nodes, the desired walk would have to leave each
node exactly as often as it entered it. Nodes of odd degree could be used only
as the beginning or ending of the walk, because such nodes could be crossed
only a certain number of times before they proved to be a dead end. The
traveler could not exit the node without using a previously traveled arc.
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Euler noted that unless a graph contained either exactly zero or two nodes of
odd degree, the walk was impossible. If there were two odd-degree nodes, the
walk could start at the first and end at the second; if there were no nodes of odd
degree, the walk could begin and end at the same node. The walk is not
possible for graphs containing any other number of nodes of odd degree, as is
the case with the city of Konigsberg. This problem is now called finding an
Euler path through a graph.

Note that the predicate calculus representation, though it captures the
relationships between bridges and land in the city, does not suggest the concept
of the degree of a node. In the graph representation there is a single instance of
each node with arcs between the nodes, rather than multiple occurrences of
constants as arguments in a set of predicates. For this reason, the graph
representation suggests the concept of node degree and the focus oftEuler’s
proof. This illustrates graph theory’s power for analyzing the structure of
objects, properties, and relationships.

Structure for the state space search:
There are many ways to describe state space and the. most common one is the
graph to clear that topic we need to go through graph theory:

Graph Theory

A graph is a set of nodes or states and a set of arcs that connect the nodes. A
labeled graph has one or more descriptors (labels) attached to each node that
distinguishes that node from any other .node in the graph. In a state space
graph, these descriptors identify.states in a problem-solving process. If there
are no descriptive differences,between two nodes, they are considered the
same. The arc between two nedes is indicated by the labels of the connected
nodes.

The arcs of a graph may-also be labeled. Arc labels are used to indicate that
an arc represents a:named relationship (as in a semantic network) or to attach
weights to arcs (as.inthe traveling salesperson problem). If there are different
arcs between the same two nodes (as in Figure (5-2)), these can also be
distinguished through labeling.

A-graph is directed if arcs have an associated directionality. The arcs in a
directed graph are usually drawn as arrows or have an arrow attached to
indicate direction. Arcs that can be crossed in either direction may have two
arrows attached but more often have no direction indicators at all. Figure (5-3)
Is a labeled, directed graph: arc (a, b) may only be crossed from node a to node
b, but arc (b, ) is crossable in either direction.

A path through a graph connects a sequence of nodes through successive arcs.
The

Path is represented by an ordered list that records the nodes in the order they
occur in the path. In Figure (5-3) [a, b, c, d] represents the path through nodes
a, b, ¢, and d, in that order.
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A rooted graph has a unique node, called the root, such that there is a path from
the root to all nodes within the graph. In drawing a rooted graph, the root is
usually drawn at the top of the page, above the other nodes. The state space
graphs for games are usually rooted graphs with the start of the game as the
root.

A tree is a graph in which two nodes have at most one path between them.
Trees often have roots, in which case they are usually drawn with the root at
the top, like a rooted graph. Because each node in a tree has only one path of
access from any other node, it is impossible for a path to loop or cycle through

a sequence of nodes.
a ()
- _____—/ ©
b

Nodes = {a,b,c,d,e}
Arcs = {(a,b),(a,d),(b,c),(c,b),(c,d),(d,a),(d,e);(e,c),(e,d)}

Figure (5.3) A labeled directed graph.

For rooted trees or graphs, relationships between nodes include parent, child,
and sibling. These are used in_therusual familial fashion with the parent
preceding its child along adirected arc. The children of a node are called
siblings. Similarly, an ancestor comes before a descendant in some path of a
directed graph. In Figure (5-4), b is a parent of nodes e and f (which are,
therefore, children.of b.and siblings of each other). Nodes a and c are ancestors
of states g, h, and'i, and g,'h, and i are descendants of a and c.

a
/\.\
b b d

AL

Figure (5.4) A rooted tree, exemplifying Family relationships.
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Before introducing the state space representation of problems we formally
define these concepts.

DEFINITION

GRAPH

A graph consists of:

A set of nodes N1, N2, N3, ..., Nn, ..., which need not be finite.

A set of arcs that connect pairs of nodes.

Arcs are ordered pairs of nodes; i.e., the arc (N3, N4) connects node N3 to
node N4. This indicates a direct connection from node N3 to N4 but not from
N4 to N3, unless (N4, N3) is also an arc, and then the arc joining N3 and N4 is
undirected.

If a directed arc connects N;and Ny, then N;jis called the parent ofng and N, the

child of n;. If the graph also contains an arc (N, Ni), then N«and niare

called siblings.
A rooted graph has a unique node Nsfrom which all paths'inthe graph originate.
That is, the root has no parent in the graph.

A tip or leaf node is a node that has no children.
An ordered sequence of nodes [N:, Nz, N, ..., NaJ, Where each pair Ni, Nw:in the

sequence represents an arc, i.e., (N, Ni), is called apath of length n - 1.

On a path in a rooted graph, a node is said to be an ancestor of all nodes
positioned after it (to its right) as'well as a descendant of all nodes before it.

A path that contains any node mere than once (some N;in the definition of path
above is repeated) is said to contain a cycle or loop.

A tree is a graph in'which there is a unique path between every pair of nodes.
(The paths in a tree, therefore, contain no cycles.)

The edges in.a rooted tree are directed away from the root. Each node in a
rooted tree hasa unique parent.

Two nodes are said to be connected if a path exists that includes them both.

The State Space Representation of Problems

In the state space representation of a problem, the nodes of a graph correspond
to partial problem solution states and the arcs correspond to steps in a problem-
solving process. One or more initial states, corresponding to the given
information in a problem instance, form the root of the graph. The graph also
defines one or more goal conditions, which are solutions to a problem instance.
State space search characterizes problem solving as the process of finding a
solution path from the start state to a goal.
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We now formally define the state space representation of problems:
DEFINITION
STATE SPACE SEARCH
A state space is represented by a four-tuple [N,A,S,GD], where:
N is the set of nodes or states of the graph. These correspond to the states in
a problem-solving process.
A is the set of arcs (or links) between nodes. These correspond to the steps
in a problem-solving process.
S, a nonempty subset of N, contains the start state(s) of the problem.

GD, a nonempty subset of N, contains the goal state(s)-of the problem. The
states in GD are described using either:

1. A measurable property of the states encountered in the search.

2. A measurable property of the path developed in the search, for example,
the sum of the transition costs for the arcs.of the path.

A solution path is a path through this graph from a node in S to a node in
GD.

A goal may describe a state, such as a winning board in tic-tac-toe (Figure (5-
5)) or a goal configuration in.the 8-puzzle (Figure (5-6)). Alternatively, a goal
can describe some property of the.solution path itself.

Arcs of the state space correspond to steps in a solution process and paths
through the space represent solutions in various stages of completion. Paths are
searched, beginning at the'start state and continuing through the graph, until
either the goal description is satisfied or they are abandoned. The actual

generation«f new states along the path is done by applying operators, such as “

legal moves”.ina game or inference rules in a logic problem or expert system,

to existing states on a path.

The task of a search algorithm is to find a solution path through such a
problem space. Search algorithms must keep track of the paths from a start to a
goal node, because these paths contain the series of operations that lead to the
problem solution.

One of the general features of a graph, and one of the problems that arise in
the design of a graph search algorithm, is that states can sometimes be reached
through different paths. For example, in Figure (5-3) a path can be made from
state a to state d either through b and c or directly from a to d. This makes it
Important to choose the best path according to the needs of a problem. In
addition, multiple paths to a state can lead to loops or cycles in a solution path
that prevent the algorithm from reaching a goal. A blind search for goal state e

7
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in the graph of Figure (5-3) might search the sequence of states abcdabcdabcd
. forever!lf the space to be searched is a tree, as in Figure (5-4), the problem
of cycles does not occur. It is, therefore, important to distinguish between
problems whose state space is a tree and those that may contain loops. General
graph search algorithms must detect and eliminate loops from potential solution
paths, whereas tree searches may gain efficiency by eliminating this test and its
overhead.
Tic-tac-toe and the 8-puzzle exemplify the state spaces of simple games. Both
of these examples demonstrate termination conditions of type 1 in our
definition of state space search. Example 5.1.3, the traveling salesperson
problem, has a goal description of type 2, the total cost of the path itself.

EXAMPLE 5.1.1: TIC-TAC-TOE

The state space representation of tic-tac-toe appears in Figure (5-5) The start
state is an empty board, and the termination or goal description is.a board state
having three Xs in a row, column, or diagonal (assuming that the goal is a win
for X). The path from the start state to a goal state gives the series of moves in
a winning game.

The states in the space are all the different configurations of Xs and Os that the
game can have. Of course, although there are 3°ways to arrange {blank, X, O}
In nine spaces, most of them would never occurin an actual game. Arcs are
generated by legal moves of the game;yalternating between placing an X and an
O in an unused location. The state Space IS a graph rather than a tree, as some
states on the third and deeper levels.<can be reached by different paths.
However, there are no cycles in‘the state space, because the directed arcs of
the graph do not allow a mave te.be undone. It is impossible to “go back up”
the structure once a state has been reached. No checking for cycles in path
generation is necessary.
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Figure (5-5) Portion of the state space for tic-tac-toe.

The state space representation provides a means of determining the complexity
of the problem. In tic-tac-toe, there are nine first moves with eight possible
responses to each of them, followed by seven possible responses to each of
these, and so on. It follows that 9 x 8 x 7 x ... or 9! different paths can be
generated. Although it is not impossible for a computer to search this number
of paths (362,880) exhaustively, many important problems also_.exhibit
factorial or exponential complexity, although on a much larger scale.<Chess has
1012% possible game paths; checkers has10*°, some of which may.never occur
in an actual game. These spaces are difficult or impossible towsearch
exhaustively. Strategies for searching such large spaces often rely on heuristics
to reduce the complexity of the search.

EXAMPLE 5.1.2: THE 8-PUZZLE

In the 15-puzzle of Figure (5-6), 15 differently numbered tiles are fitted into 16
spaces on a grid. One space is left blank so that tiles can be moved around to
form different patterns. The goal is to find.a series.of moves of tiles into the
blank space that places the board in a goal configuration. This is a common
game that most of us played as children:(The version | remember was about 3
inches square and had red and whitetiles in a black frame.)

A number of interesting aspects. of ‘this game have made it useful to
researchers in problem solving. The state space is large enough to be
interesting but is not completely intractable (16! if symmetric states are treated
as distinct). Game states are easy to represent.

12[3][ 2] 3
s 213 14
; 15
71 65
9|8

10
Figure (5-6) the 15-puzzle and the 8-puzzle.

~N|[o|o b~

15-puzzle 8-puzzle

The 8-puzzle is a 3 x 3 version of the 15-puzzle in which eight tiles can be

moved around in nine spaces. Because the 8-puzzle generates a smaller state
space than the full 15-puzzle and its graph fits easily on a page, it is used for
many examples in this lecture notes.

Although in the physical puzzle moves are made by moving tiles (“move the 7
tile right, provided the blank is to the right of the tile” or “move the 3 tile
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down”), it is much simpler to think in terms of “moving the blank space”. This
simplifies the definition of move rules because there are eight tiles but only a
single blank. In order to apply a move, we must make sure that it does not
move the blank off the board. Therefore, all four moves are not applicable at all
times; for example, when the blank is in one of the corners only two moves are
possible.
The legal moves are:

e move the blank up 0

e move the blank right —

e move the blank down |

e move the blank left
If we specify a beginning state and a goal state for the 8-puzzle, it'is.possible to
give a state space accounting of the problem-solving process (Figure 5-7).
States could be:

Left Up Down
. al[ 1 2[4 FAE FIE . 1 3
7 NE EIE E 7 K NE E 2
5 N 20| s 3l BBl BBIEBE |E 2|[s] =}

- o | g | =
- | s

Figure (5-7) State space of the 8-puzzle generated by
move blank operations.

Represented using a simple 3 x 3 array. A predicate calculus representation

could use a “state” predicate with nine parameters (for the locations of numbers
in the grid). Four procedures, describing each of the possible moves of the
blank, define the arcs in the state space.

As with tic-tac-toe, the state space for the 8-puzzle is a graph (with most
states having multiple parents), but unlike tic-tac-toe, cycles are possible. The
GD or goal description of the state space is a particular state or board

10
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configuration. When this state is found on a path, the search terminates. The
path from start to goal is the desired series of moves.

It is interesting to note that the complete state space of the 8- and 15-puzzles
consists of two disconnected (and in this case equal-sized) subgraphs. This
makes half the possible states in the search space impossible to reach from any
given start state. If we exchange (by prying loose!) two immediately adjacent
tiles, states in the other component of the space become reachable.

EXAMPLE 5.1.3: THE TRAVELING SALESPERSON

Suppose a salesperson has five cities to visit and then must return home. The
goal of the problem is to find the shortest path for the salesperson to travel,
visiting each city, and then returning to the starting city. Figure (5-8) gives an
instance of this problem. The nodes of the graph represent cities, and each arc
is labeled with a weight indicating the cost of traveling that arc..This cost might
be a representation of the miles necessary in car travel or cost of.an air flight
between the two cities. For convenience, we assume. the salesperson lives in
city A and will return there, although this assumption.simply reduces the
problem of N cities to a problem of (N - 1) cities.

The path [A,D,C,B,E,A], with associated cost.of 450 miles, is an example of a
possible circuit. The goal description requires a.complete circuit with minimum
cost. Note

11
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Figure (5-9) Search of the traveling salesperson problem.

Path: Path: Path: ... Each arc is marked with the total weight of all paths from
ABCDEA  ABCEDA  ABDCEA the start node (A) to its endpoint.

Cost: Cost: Cost:

375 425 475

that the goal description is a property of the entire path, rather than of a single
state. This is a goal description of type 2 from the definition of state space
search.

Figure (5-9) shows one way in which possible solution paths may be
generated and compared. Beginning with node A, possible next states are
added until all cities are included and the path returns home. The goal s the
lowest-cost path.

As Figure (5-9) suggests, the complexity of exhaustive searchwin the
traveling salesperson problem is (N - 1)!, where N is the number of cities in the
graph. For 9 cities we may exhaustively try all paths,<but for.any problem
instance of interesting size, for example with 50 cities, simple exhaustive
search cannot be performed within a practical length. of time. In fact
complexity costs for an N! search grow so fast that very soon the search
combinations become intractable.

Several techniques can reduce this search complexity. One is called branch
and bound (Horowitz and Sahni 1978). Branch.and bound generates paths one
at a time, keeping track of the best circuit found so far. This value is used as a
bound on future candidates. As paths are constructed one city at a time, the
algorithm examines each partially completed path. If the algorithm determines
that the best possible extension to'a path, the branch, will have greater cost than
the bound, it eliminates that partial path and all of its possible extensions. This
reduces search considerably but still leaves an exponential number of paths
(1.26" rather than N1).

Figure (5-10) An instance of the traveling salesperson problem
with the nearest neighbor path in bold. Note that

12
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this path (A, E, D, B, C, A), at a cost of 550, is not

the shortest path. The comparatively high cost of

arc (C, A) defeated the heuristic.
Another strategy for controlling search constructs the path according to the rule
“g0 to the closest unvisited city.” The nearest neighbor path through the graph
of Figure 5-10 is [A,E,D,B,C,A], at a cost of 375 miles. This method is highly
efficient, as there is only one path to be tried! The nearest neighbor, sometimes
called greedy, heuristic is fallible, as graphs exist for which it does not find the
shortest path, see Figure 3.11, but it is a possible compromise when the time
required makes exhaustive search impractical.

5.2 Strategies for State Space Search
5.2.1 Data-Driven and Goal-Driven Search

A state space may be searched in two directions: from<the given data of a
problem instance toward a goal or from a goal back to the data.

In data-driven search, sometimes called forward chaining, the problem solver
begins with the given facts of the problem and a set of legal moves or rules for
changing state. Search proceeds by applying rules tofacts to produce new facts,
which are in turn used by the rules to generate more new facts. This process
continues until (we hope!) it generates a path that satisfies the goal condition.
An alternative approach is possible: take the goal that we want to solve. See
what rules or legal moves could be used to generate this goal and determine
what conditions must be true toruse them. These conditions become the new
goals, or subgoals, for the search. Search continues, working backward through
successive subgoals until (we hope!) it works back to the facts of the problem.
This finds the chain of moves.or rules leading from data to a goal, although it
does so in backward:order. This approach is called goal-driven reasoning, or
backward chaining; and.it recalls the simple childhood trick of trying to solve a
maze by working back from the finish to the start.

To summarize: data-driven reasoning takes the facts of the problem and
applies the rules-or legal moves to produce new facts that lead to a goal; goal-
drivensreasoning focuses on the goal, finds the rules that could produce the
goal; and chains backward through successive rules and subgoals to the given
facts of the problem.

In.the final analysis, both data-driven and goal-driven problem solvers
search the same state space graph; however, the order and actual number of
states searched can differ. The preferred strategy is determined by the
properties of the problem itself. These include the complexity of the rules, the
“shape” of the state space, and the nature and availability of the problem data.
All of these vary for different problems.

As an example of the effect a search strategy can have on the complexity of

search, consider the problem of confirming or denying the statement “I am a

descendant of Thomas Jefferson.” A solution is a path of direct lineage between

13
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the “1” and Thomas Jefferson. This space may be searched in two directions,

starting with the “I” and working along ancestor lines to Thomas Jefferson or
starting with Thomas Jefferson and working through his descendants.

Some simple assumptions let us estimate the size of the space searched in each
direction. Thomas Jefferson was born about 250 years ago; if we assume 25
years per generation, the required path will be about length 10. As each person

has exactly two parents, a search back from the “1” would examine on the order

of 219 ancestors. A search that worked forward from Thomas Jefferson'would
examine more states, as people tend to have more than two children
(particularly in the eighteenth and nineteenth centuries). If we “assume an
average of only three children per family, the search would examine on the

order of 31° nodes of the family tree. Thus, a search back fromthe would

examine fewer nodes. Note, however, that both directions yield exponential
complexity.

The decision to choose between data- and goal-driven search is based on
the structure of the problem to be solved. Goal-driven search is suggested if:

IIIII

1. A goal or hypothesis is given in the problem statement or can easily be
formulated. In a mathematics theorem:prover, for example, the goal is the
theorem to be proved. Many diagnostic systems consider potential diagnoses
in a systematic fashion, confirming or eliminating them using goal-driven
reasoning.

2. There are a large number of rules that match the facts of the problem and
thus produce an increasing number of conclusions or goals. Early selection
of a goal can eliminate most of these branches, making goal-driven search
more effectivedin pruning the space (Figure 5-11). In a theorem prover, for
example, the total number of rules used to produce a given theorem is
usually much smaller than the number of rules that may be applied to the
entire set of axioms.

3. Problem,data are not given but must be acquired by the problem solver. In
this_case; goal-driven search can help guide data acquisition. In a medical
diagnosis program, for example, a wide range of diagnostic tests can be
applied. Doctors order only those that are necessary to confirm or deny a
particular hypothesis.

Direction of Goal
reasoning

|
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Figure (5-11) State space in which goal-directed search effectively prunes extraneous search paths.
Goal-driven search thus uses knowledge of the desired goal to guide the search
through relevant rules and eliminate branches of the space.

Data-driven search (Figure 5-12) is appropriate for problems in which:

1. All or most of the data are given in the initial problem statement.
Interpretation problems often fit this mold by presenting a collection of
data and asking the system to provide a high-level interpretation.
Systems that analyze particular data (e.g., the PROSPECTOR or
Dipmeter programs, which interpret geological data.or attempt to find
what minerals are likely to be found at a site) fit the data-driven
approach.

2. There are a large number of potential goals, but.there are only a few
ways to use the facts and given information of a particular problem
instance. The DENDRAL program, an expert system that finds the
molecular structure of organic compounds based on their formula, mass
spectrographic data, and knowledge of .chemistry, is an example of this.
For any organic compound, there are an enormous number of possible
structures. However, the mass spectrographic data on a compound allow
DENDRAL to eliminate all buta few of these.

3. It is difficult to form a geal or hypothesis. In using DENDRAL, for
example, little may be known initially about the possible structure of a
compound.

Data-driven search uses the knowledge and constraints found in the given data
of a problem to guide search along lines known to be true.

Goal

Direction of
Data reasoning
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Figure (5-12) State space in which data-directed search prunes irrelevant data
and their consequents and determines one of a number of possible goals.

To summarize, there is no substitute for careful analysis of the particular
problem to be solved, considering such issues as the branching factor of rule
applications how many new states are generated by rule applications in both
directions?, availability of data, and ease of determining potential goals.

5.3 SEARCHING TECHNIQUES

As we have already discussed that searching our state space forms the core
heart of the Al problem solving. Once a problem is formulated, we need then to
solve it. We can use these techniques in many areas like theorem proving,
game playing, expert system, natural language processing etc. This.involves the
tasks like deduction, inference, planning, common sense reasoning etc.

5.3.1 Types of search
As we know in the search methods or techniques, we firstly select one option
and leave the other options if this option is our final goal, (solution) else we
continue selecting, testing and expanding until either solution is found or there
are no more state to be expanded. This will be determined by the search
methods, so we need many different types of search-algorithms. Basically there
are two types of searches:

1. Uniformed search or blind search-or unguided.

2. Informed or heuristic searchor guided.
But please not that all search-techniques are distinguished by the order in
which nodes are expanded. Various Search strategies are shown in figure 5-13

Search methods

[~ |

Uniformed search or Informed or heuristic
blind

Breadth first ~ Depth first Iterative Hill Best ErSI A*
search search deepening climbing searc Search
(BFS) (DFS)

Figure (5-13) sub area of search types
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All of these search strategies have advantage and drawbacks based not on the
types of the problems and it representation but also on the computer resources
that available to solve because each mechanism of search have its own
consideration to manage time and space complexity.

5.3.1.1 Breadth first search (BES)

It is the simplest form of the blind search. In this technique the root expand
first, then all its successors are expanded and then their successors and so on.
In general, in BFS all nodes are expanded at a given depth in the search
tree before any nodes at the next level are expanded. Search tree generated
by BFS shown in figure (5-14).

) i 0 0
@b 0 @ M| @ §
O @ 0 O O C

Figure (5-14) Breadth first search on a simple binary tree

We implement breadth-first search using lists, open and closed, to keep track
of progress through the state space. Open, lists states that have been generated
but whaose.children have not been examined. The order in which states are
removed from open determines the order of the search. Closed records states
already examined.

function breadth_first_search;

begin
open := [Star]; % initialize
closed :=[1];
while open =[] do % states remain
begin
remove leftmost state from open, call it X;
if X Is a goal then return SUCCESS % goal found
else begin
generate children of X;
put X on closed;
discard children of X if already on open or closed; % loop check
put remaining children on right end of open % gueue
end
end
return FAIL % no states left

end.
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Child states are generated by inference rules, legal moves of a game, or other
state transition operators. Each iteration produces all children of the state X and
adds them to open. Note that open is maintained as a queue, or first-in-first-out
(FIFO) data structure. States are added to the right of the list and removed
from the left. This biases search toward the states that have been.on open the
longest, causing the search to be breadth-first. Child states that havealready
been discovered (already appear on either open or closed) are discarded. If the
algorithm terminates because the condition of the “while” loop.is no longer
satisfied (open = [ ]) then it has searched the entire graph without finding the
desired goal: the search has failed.

Time and space complexity of (BFS)

The amount of time taken for generating these nodes is proportional to the
depth, d and branching factor, b and is given hy:

1+ b+ b*+ b3 + - +# b4 +b¥! — b = 0(b™*)

Every state has b successors. The root of the search tree generates b nodes at
the first level, each of which generates more b nodes, for total b# at the second
level, b® at the third level and so.on. Suppose the solution at depth d in the
worst case we expand all but the last nod at level d (since the goal itself not
expanded), generating b?*1 — b at leveld + 1, that’s how the above equation
construct. Thus we have space complexity in the following order 0 (b%).

Advantage of BFS
1. BFSwill never get trapped exploring a blind alley
2. Itis:guaranteed to find a solution if one exists.
Disadvantage of BFS
1. Time complexity and space complexity are both exponential type, this is
big hurdle.
2. All nodes are to be generated in BFS. So, even unwanted nodes are to be
remembered (stored in queue) which is of no practical use of the search.

Depth first search

The descendant states are added and removed from the left end of open:
open is maintained as a stack, or last-in-first-out (LIFO) structure. The
organization of open as a stack directs search toward the most recently
generated states, producing a depth-first search order. Search tree generated by
BFS shown in figure (5-15).
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function depth_first_search;

begin
open = [Start]; % initialize
closed :=[1];
while open =[] do % states remain
begin
remove lefimost state from open, call it X;
if X is a goal then return SUCCESS % goal found
else begin
generate children of X;
put X on closed;
discard children of X if already on open or closed; % loop check
put remaining children on left end of open % stack
end
end;
return FAIL % no states left
end.

Time and space complexity of (DFS)

The amount of time taken for generating these nodes is proportional to the

depth, d and branching factor, b and is given by: 0 (b%).
And space complexity given by linear function of depth, d. So,
Space complexity = 0(db).

Advantage of DFS

1. Memory requirements in'DFES.are less as only nodes on the current path

are stored.

2. By chance, DFS may find a solution without examining much of search

space of all.

Disadvantage of DFS

This type of search can-.go on and on, deeper and deeper into the search space

and thus, we can get.lost. This referred to as blind alley.
EXAMPLE OF APPLING BFS & DFS

Let us consider the tree in the figure (5-16): first will apply BFS : U is the goal

¥
Em Fa G H | J
A4 ¥ ¥
[ ]

.-"f-
KI" LI MH- N Owe Pe Qe R e
- T :

s L Ue

Figure (5-16) Graph for breadth- and depth-first search examples.
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.open =[A]; closed =[]

.open =[B,C,D]; closed = [A]

.open = [C,D,E,F]J; closed = [B,A]

.open =[D,E,F,G,H]; closed = [C,B,A]

.open = [E,F,G,H,1,J]; closed = [D,C,B,A]

.open =[F,G,H,1,J,K,L]; closed = [E,D,C,B,A]

.open = [G,H,I,J,K,L,M] (as L is already on open); closed = [F,E,D,C,B,A]
.open =[H,I,J,K,L,M,N]; closed = [G,F,E,D,C,B,A]

.and so on until either U is found or open = [].

OO ~NO U WN P

Figure 5.17 illustrates the graph of Figure 5.16 after six iterations of
breadth_first_search. The states on open and closed are highlighted. States not
shaded have not been discovered by the algorithm. Note that open.records the
states on the “frontier” of the search at any stage and that closed records states
already visited.

NN

|
. D: FI Closed

Se Te Us Cpan

Figure (5-17)Graph of Figure (5-16) at iteration 6 of breadth-first search.
States on open and closed are highlighted.

A trace of depth_first_search on the graph of Figure (5-16) appears below.
The initial'states of open and closed are given on line 1. Assume U is the goal
state.
.open =[A]; closed =[]
.open=[B,C,D]; closed = [A]
. open = [E,F,C,D]; closed = [B,A]
.open = [K,L,F,C,D]; closed = [E,B,A]
.open =[S,L,F,C,D]; closed = [K,E,B,A]
.open = [L,F,C,D]; closed = [S,K,E,B,A]
.open =[T,F,C,D]; closed = [L,S,K,E,B,A]
.open = [F,C,D]; closed = [T,L,S,K,E,B,A]
.open =[M,C,D], (as L is already on closed); closed = [F,T,L,S,K,E,B,A]
10. open = [C,D]; closed = [M,F,T,L,S,K,E,B,A]
11. open = [G,H,D]; closed = [C,M,F,T,L,S,K,E,B,A]
and so on until either U is discovered or open = [ ].

OO ~NO Ul WN P

21



Chaptor flve: state pace seardh propared by: Simael Shdul Dlattar

Open

Figure (5-18) Graph of Figure (5-16) at iteration 6 of depth-first search.
States on open and closed are highlighted.
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