
Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

1

Problem Solving

By Intelligent

Search
Problem solving requires two prime considerations: first representation of the

problem by an appropriately organized state space and then testing the existence of a

well-defined goal state in that space. Identification of the goal state and

determination of the optimal path, leading to the goal through one or more transitions

from a given starting state, will be addressed in this chapter in sufficient details. The

chapter, thus, starts with some well-known search algorithms, such as the depth first

and the breadth first search, with special emphasis on their results of time and space

complexity. It then gradually explores the ‘heuristic search’ algorithms, where the

order of visiting the states in a search space is supported by thumb rules, called

heuristics, and demonstrates their applications in complex problem solving. It also

discusses some intelligent search algorithms for game playing.

Introduction

We have already come across some of the problems that can be solved by

intelligent search. For instance, the well-known water-jug problem, the number

puzzle problem and the missionaries-cannibals problem are ideal examples of

problems that can be solved by intelligent search. Common experience reveals

that a search problem is associated with two important issues: first ‘what to

search’ and secondly ‘where to search’. The first one is generally referred to as

‘the key’, while the second one is termed ‘search space’. In AI the search space

is generally referred to as a collection of states and is thus called state space.

Unlike common search space, the state space in

most of the problems in AI is not completely known, prior to solving the

problem. So, solving a problem in AI calls for two phases: the generation of the

space of states and the searching of the desired problem state in that space.

Further, since the whole state space for a problem is quite large, generation of

the whole space prior to search may cause a significant blockage of storage,

leaving a little for the search part. To overcome this problem, the state space is

expanded in steps and the desired state, called “the goal”, is searched after each

incremental expansion of the state space.

To successfully design and implement search algorithms, a programmer must

be able

to analyze and predict the behavior of the problem. Questions that need to be

answered include:

 Is the problem solver guaranteed to find a solution?

 Will the problem solver always terminate? Can it become caught in an

infinite loop?

 When a solution is found, is it guaranteed to be optimal?

 What is the complexity of the search process in terms of time usage?

Memory usage?

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

2

 How can the interpreter most effectively reduce search complexity?

 How can an interpreter be designed to most effectively utilize a

representation Language?

The theory of state space search is our primary tool for answering these

questions. By representing a problem as a state space graph, we can use graph

theory to analyze the structure and complexity of both the problem and the

search procedures that we employ to solve it.

 A graph consists of a set of nodes and a set of arcs or links connecting pairs

of nodes. In the state space model of problem solving, the nodes of a graph are

taken to represent discrete states in a problem-solving process, such as the

results of logical inferences or the different configurations of a game board.

The arcs of the graph represent transitions between states. These transitions

correspond to logical inferences or legal moves of a game. In expert systems,

for example, states describe our knowledge of a problem instance at some stage

of a reasoning process. Expert knowledge, in the form of if . . . then rules,

allows us to generate new information; the act of applying a rule is represented

as an arc between states.

Graph theory is our best tool for reasoning about the structure of objects and

relations; indeed, this is precisely the need that led to its creation in the early

eighteenth century. The Swiss mathematician Leonhard Euler invented graph

theory to solve the “bridges of Konigsberg problem.” The city of Konigsberg

occupied both banks and two islands of a river. The islands and the riverbanks

were connected by seven bridges, as indicated in Figure (5-1).

Figure (5-1): The city of Konigsberg

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

3

Figure (5-2): Graph of the Konigsberg bridge system.

The bridges of Konigsberg problem asks if there is a walk around the city that

crosses each bridge exactly once. Although the residents had failed to find such

a walk and doubted that it was possible, no one had proved its impossibility.

Devising a form of graph theory, Euler created an alternative representation for

the map, presented in Figure 6.2. The riverbanks (rb1 and rb2) and islands (i1

and i2) are described by the nodes of a graph; the bridges are represented by

labeled arcs between nodes (b1, b2, , b7). The graph representation preserves

the essential structure of the bridge system, while ignoring extraneous features

such as bridge lengths, distances, and order of bridges in the walk.

Alternatively, we may represent the Konigsberg bridge system using predicate

calculus. The connect predicate corresponds to an arc of the graph, asserting

that two land masses are connected by a particular bridge. Each bridge requires

two connect predicates, one for each direction in which the bridge may be

crossed. A predicate expression, connect(X, Y, Z) = connect (Y, X, Z),

indicating that any bridge can be crossed in either direction, would allow

removal of half the following connect facts:

The predicate calculus representation is equivalent to the graph representation

in that the connectedness is preserved. Indeed, an algorithm could translate

between the two representations with no loss of information. However, the

structure of the problem can be visualized more directly in the graph

representation, whereas it is left implicit in the predicate calculus version.

Euler’s proof illustrates this distinction.

In proving that the walk was impossible, Euler focused on the degree of the

nodes of the graph, observing that a node could be of either even or odd degree.

An even degree node has an even number of arcs joining it to neighboring

nodes. An odd degree node has an odd number of arcs. With the exception of

its beginning and ending nodes, the desired walk would have to leave each

node exactly as often as it entered it. Nodes of odd degree could be used only

as the beginning or ending of the walk, because such nodes could be crossed

only a certain number of times before they proved to be a dead end. The

traveler could not exit the node without using a previously traveled arc.

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

4

Euler noted that unless a graph contained either exactly zero or two nodes of

odd degree, the walk was impossible. If there were two odd-degree nodes, the

walk could start at the first and end at the second; if there were no nodes of odd

degree, the walk could begin and end at the same node. The walk is not

possible for graphs containing any other number of nodes of odd degree, as is

the case with the city of Konigsberg. This problem is now called finding an

Euler path through a graph.

Note that the predicate calculus representation, though it captures the

relationships between bridges and land in the city, does not suggest the concept

of the degree of a node. In the graph representation there is a single instance of

each node with arcs between the nodes, rather than multiple occurrences of

constants as arguments in a set of predicates. For this reason, the graph

representation suggests the concept of node degree and the focus of Euler’s

proof. This illustrates graph theory’s power for analyzing the structure of

objects, properties, and relationships.

Structure for the state space search:
There are many ways to describe state space and the most common one is the

graph to clear that topic we need to go through graph theory:

Graph Theory

 A graph is a set of nodes or states and a set of arcs that connect the nodes. A

labeled graph has one or more descriptors (labels) attached to each node that

distinguishes that node from any other node in the graph. In a state space

graph, these descriptors identify states in a problem-solving process. If there

are no descriptive differences between two nodes, they are considered the

same. The arc between two nodes is indicated by the labels of the connected

nodes.

 The arcs of a graph may also be labeled. Arc labels are used to indicate that

an arc represents a named relationship (as in a semantic network) or to attach

weights to arcs (as in the traveling salesperson problem). If there are different

arcs between the same two nodes (as in Figure (5-2)), these can also be

distinguished through labeling.

 A graph is directed if arcs have an associated directionality. The arcs in a

directed graph are usually drawn as arrows or have an arrow attached to

indicate direction. Arcs that can be crossed in either direction may have two

arrows attached but more often have no direction indicators at all. Figure (5-3)

is a labeled, directed graph: arc (a, b) may only be crossed from node a to node

b, but arc (b, c) is crossable in either direction.

A path through a graph connects a sequence of nodes through successive arcs.

The

Path is represented by an ordered list that records the nodes in the order they

occur in the path. In Figure (5-3) [a, b, c, d] represents the path through nodes

a, b, c, and d, in that order.

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

5

A rooted graph has a unique node, called the root, such that there is a path from

the root to all nodes within the graph. In drawing a rooted graph, the root is

usually drawn at the top of the page, above the other nodes. The state space

graphs for games are usually rooted graphs with the start of the game as the

root.

 A tree is a graph in which two nodes have at most one path between them.

Trees often have roots, in which case they are usually drawn with the root at

the top, like a rooted graph. Because each node in a tree has only one path of

access from any other node, it is impossible for a path to loop or cycle through

a sequence of nodes.

Nodes = {a,b,c,d,e}

Arcs = {(a,b),(a,d),(b,c),(c,b),(c,d),(d,a),(d,e),(e,c),(e,d)}

Figure (5.3) A labeled directed graph.

For rooted trees or graphs, relationships between nodes include parent, child,

and sibling. These are used in the usual familial fashion with the parent

preceding its child along a directed arc. The children of a node are called

siblings. Similarly, an ancestor comes before a descendant in some path of a

directed graph. In Figure (5-4), b is a parent of nodes e and f (which are,

therefore, children of b and siblings of each other). Nodes a and c are ancestors

of states g, h, and i, and g, h, and i are descendants of a and c.

Figure (5.4) A rooted tree, exemplifying Family relationships.

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

6

Before introducing the state space representation of problems we formally

define these concepts.

D E F I N I T I O N

GRAPH

A graph consists of:

A set of nodes N1, N2, N3, ..., Nn, ..., which need not be finite.

A set of arcs that connect pairs of nodes.

Arcs are ordered pairs of nodes; i.e., the arc (N3, N4) connects node N3 to

node N4. This indicates a direct connection from node N3 to N4 but not from

N4 to N3, unless (N4, N3) is also an arc, and then the arc joining N3 and N4 is

undirected.

If a directed arc connects Nj and Nk, then Nj is called the parent of Nk and Nk, the

child of Nj. If the graph also contains an arc (Nj, Nl), then Nk and Nl are

called siblings.

A rooted graph has a unique node NS from which all paths in the graph originate.

That is, the root has no parent in the graph.

A tip or leaf node is a node that has no children.

An ordered sequence of nodes [N1, N2, N3, ..., Nn], where each pair Ni, Ni+1 in the

sequence represents an arc, i.e., (Ni, Ni+1), is called a path of length n - 1.

On a path in a rooted graph, a node is said to be an ancestor of all nodes

positioned after it (to its right) as well as a descendant of all nodes before it.

A path that contains any node more than once (some Nj in the definition of path

above is repeated) is said to contain a cycle or loop.

A tree is a graph in which there is a unique path between every pair of nodes.

(The paths in a tree, therefore, contain no cycles.)

The edges in a rooted tree are directed away from the root. Each node in a

rooted tree has a unique parent.

Two nodes are said to be connected if a path exists that includes them both.

The State Space Representation of Problems
In the state space representation of a problem, the nodes of a graph correspond

to partial problem solution states and the arcs correspond to steps in a problem-

solving process. One or more initial states, corresponding to the given

information in a problem instance, form the root of the graph. The graph also

defines one or more goal conditions, which are solutions to a problem instance.

State space search characterizes problem solving as the process of finding a

solution path from the start state to a goal.

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

7

We now formally define the state space representation of problems:

D E F I N I T I O N

 STATE SPACE SEARCH

A state space is represented by a four-tuple [N,A,S,GD], where:

N is the set of nodes or states of the graph. These correspond to the states in

a problem-solving process.

A is the set of arcs (or links) between nodes. These correspond to the steps

in a problem-solving process.

S, a nonempty subset of N, contains the start state(s) of the problem.

GD, a nonempty subset of N, contains the goal state(s) of the problem. The

states in GD are described using either:

1. A measurable property of the states encountered in the search.

2. A measurable property of the path developed in the search, for example,

the sum of the transition costs for the arcs of the path.

A solution path is a path through this graph from a node in S to a node in

GD.

A goal may describe a state, such as a winning board in tic-tac-toe (Figure (5-

5)) or a goal configuration in the 8-puzzle (Figure (5-6)). Alternatively, a goal

can describe some property of the solution path itself.

Arcs of the state space correspond to steps in a solution process and paths

through the space represent solutions in various stages of completion. Paths are

searched, beginning at the start state and continuing through the graph, until

either the goal description is satisfied or they are abandoned. The actual

generation of new states along the path is done by applying operators, such as “

legal moves” in a game or inference rules in a logic problem or expert system,

to existing states on a path.

The task of a search algorithm is to find a solution path through such a

problem space. Search algorithms must keep track of the paths from a start to a

goal node, because these paths contain the series of operations that lead to the

problem solution.

One of the general features of a graph, and one of the problems that arise in

the design of a graph search algorithm, is that states can sometimes be reached

through different paths. For example, in Figure (5-3) a path can be made from

state a to state d either through b and c or directly from a to d. This makes it

important to choose the best path according to the needs of a problem. In

addition, multiple paths to a state can lead to loops or cycles in a solution path

that prevent the algorithm from reaching a goal. A blind search for goal state e

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

8

in the graph of Figure (5-3) might search the sequence of states abcdabcdabcd

. . . forever!If the space to be searched is a tree, as in Figure (5-4), the problem

of cycles does not occur. It is, therefore, important to distinguish between

problems whose state space is a tree and those that may contain loops. General

graph search algorithms must detect and eliminate loops from potential solution

paths, whereas tree searches may gain efficiency by eliminating this test and its

overhead.

Tic-tac-toe and the 8-puzzle exemplify the state spaces of simple games. Both

of these examples demonstrate termination conditions of type 1 in our

definition of state space search. Example 5.1.3, the traveling salesperson

problem, has a goal description of type 2, the total cost of the path itself.

EXAMPLE 5.1.1: TIC-TAC-TOE

The state space representation of tic-tac-toe appears in Figure (5-5) The start

state is an empty board, and the termination or goal description is a board state

having three Xs in a row, column, or diagonal (assuming that the goal is a win

for X). The path from the start state to a goal state gives the series of moves in

a winning game.

The states in the space are all the different configurations of Xs and Os that the

game can have. Of course, although there are 39ways to arrange {blank, X, O}

in nine spaces, most of them would never occur in an actual game. Arcs are

generated by legal moves of the game, alternating between placing an X and an

O in an unused location. The state space is a graph rather than a tree, as some

states on the third and deeper levels can be reached by different paths.

However, there are no cycles in the state space, because the directed arcs of

the graph do not allow a move to be undone. It is impossible to “go back up”

the structure once a state has been reached. No checking for cycles in path

generation is necessary.

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

9

Figure (5-5) Portion of the state space for tic-tac-toe.

The state space representation provides a means of determining the complexity

of the problem. In tic-tac-toe, there are nine first moves with eight possible

responses to each of them, followed by seven possible responses to each of

these, and so on. It follows that 9 × 8 × 7 × ... or 9! different paths can be

generated. Although it is not impossible for a computer to search this number

of paths (362,880) exhaustively, many important problems also exhibit

factorial or exponential complexity, although on a much larger scale. Chess has

10120 possible game paths; checkers has1040, some of which may never occur

in an actual game. These spaces are difficult or impossible to search

exhaustively. Strategies for searching such large spaces often rely on heuristics

to reduce the complexity of the search.

EXAMPLE 5.1.2: THE 8-PUZZLE

In the 15-puzzle of Figure (5-6), 15 differently numbered tiles are fitted into 16

spaces on a grid. One space is left blank so that tiles can be moved around to

form different patterns. The goal is to find a series of moves of tiles into the

blank space that places the board in a goal configuration. This is a common

game that most of us played as children. (The version I remember was about 3

inches square and had red and white tiles in a black frame.)

 A number of interesting aspects of this game have made it useful to

researchers in problem solving. The state space is large enough to be

interesting but is not completely intractable (16! if symmetric states are treated

as distinct). Game states are easy to represent.

1 2 3 4

12 13 14 5

11 15 6

10 9 8 7

 15-puzzle 8-puzzle

Figure (5-6) the 15-puzzle and the 8-puzzle.

The 8-puzzle is a 3 × 3 version of the 15-puzzle in which eight tiles can be

moved around in nine spaces. Because the 8-puzzle generates a smaller state

space than the full 15-puzzle and its graph fits easily on a page, it is used for

many examples in this lecture notes.

Although in the physical puzzle moves are made by moving tiles (“move the 7

tile right, provided the blank is to the right of the tile” or “move the 3 tile

1 2 3

8 4

7 6 5

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

10

down”), it is much simpler to think in terms of “moving the blank space”. This

simplifies the definition of move rules because there are eight tiles but only a

single blank. In order to apply a move, we must make sure that it does not

move the blank off the board. Therefore, all four moves are not applicable at all

times; for example, when the blank is in one of the corners only two moves are

possible.

The legal moves are:

 move the blank up ↑

 move the blank right →

 move the blank down ↓

 move the blank left ←

If we specify a beginning state and a goal state for the 8-puzzle, it is possible to

give a state space accounting of the problem-solving process (Figure 5-7).

States could be:

Figure (5-7) State space of the 8-puzzle generated by

move blank operations.

Represented using a simple 3 × 3 array. A predicate calculus representation

could use a “state” predicate with nine parameters (for the locations of numbers

in the grid). Four procedures, describing each of the possible moves of the

blank, define the arcs in the state space.

 As with tic-tac-toe, the state space for the 8-puzzle is a graph (with most

states having multiple parents), but unlike tic-tac-toe, cycles are possible. The

GD or goal description of the state space is a particular state or board

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

11

configuration. When this state is found on a path, the search terminates. The

path from start to goal is the desired series of moves.

 It is interesting to note that the complete state space of the 8- and 15-puzzles

consists of two disconnected (and in this case equal-sized) subgraphs. This

makes half the possible states in the search space impossible to reach from any

given start state. If we exchange (by prying loose!) two immediately adjacent

tiles, states in the other component of the space become reachable.

EXAMPLE 5.1.3: THE TRAVELING SALESPERSON

Suppose a salesperson has five cities to visit and then must return home. The

goal of the problem is to find the shortest path for the salesperson to travel,

visiting each city, and then returning to the starting city. Figure (5-8) gives an

instance of this problem. The nodes of the graph represent cities, and each arc

is labeled with a weight indicating the cost of traveling that arc. This cost might

be a representation of the miles necessary in car travel or cost of an air flight

between the two cities. For convenience, we assume the salesperson lives in

city A and will return there, although this assumption simply reduces the

problem of N cities to a problem of (N - 1) cities.

The path [A,D,C,B,E,A], with associated cost of 450 miles, is an example of a

possible circuit. The goal description requires a complete circuit with minimum

cost. Note

Figure (5-8) an instance of the traveling salesperson problem.

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

12

that the goal description is a property of the entire path, rather than of a single

state. This is a goal description of type 2 from the definition of state space

search.

 Figure (5-9) shows one way in which possible solution paths may be

generated and compared. Beginning with node A, possible next states are

added until all cities are included and the path returns home. The goal is the

lowest-cost path.

 As Figure (5-9) suggests, the complexity of exhaustive search in the

traveling salesperson problem is (N - 1)!, where N is the number of cities in the

graph. For 9 cities we may exhaustively try all paths, but for any problem

instance of interesting size, for example with 50 cities, simple exhaustive

search cannot be performed within a practical length of time. In fact

complexity costs for an N! search grow so fast that very soon the search

combinations become intractable.

 Several techniques can reduce this search complexity. One is called branch

and bound (Horowitz and Sahni 1978). Branch and bound generates paths one

at a time, keeping track of the best circuit found so far. This value is used as a

bound on future candidates. As paths are constructed one city at a time, the

algorithm examines each partially completed path. If the algorithm determines

that the best possible extension to a path, the branch, will have greater cost than

the bound, it eliminates that partial path and all of its possible extensions. This

reduces search considerably but still leaves an exponential number of paths

(1.26𝑁 rather than N!).

Figure (5-10) An instance of the traveling salesperson problem

 with the nearest neighbor path in bold. Note that

Figure (5-9) Search of the traveling salesperson problem.

Each arc is marked with the total weight of all paths from

the start node (A) to its endpoint.

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

13

 this path (A, E, D, B, C, A), at a cost of 550, is not

 the shortest path. The comparatively high cost of

 arc (C, A) defeated the heuristic.

Another strategy for controlling search constructs the path according to the rule

“go to the closest unvisited city.” The nearest neighbor path through the graph

of Figure 5-10 is [A,E,D,B,C,A], at a cost of 375 miles. This method is highly

efficient, as there is only one path to be tried! The nearest neighbor, sometimes

called greedy, heuristic is fallible, as graphs exist for which it does not find the

shortest path, see Figure 3.11, but it is a possible compromise when the time

required makes exhaustive search impractical.

5.2 Strategies for State Space Search

5.2.1 Data-Driven and Goal-Driven Search

A state space may be searched in two directions: from the given data of a

problem instance toward a goal or from a goal back to the data.

 In data-driven search, sometimes called forward chaining, the problem solver

begins with the given facts of the problem and a set of legal moves or rules for

changing state. Search proceeds by applying rules to facts to produce new facts,

which are in turn used by the rules to generate more new facts. This process

continues until (we hope!) it generates a path that satisfies the goal condition.

An alternative approach is possible: take the goal that we want to solve. See

what rules or legal moves could be used to generate this goal and determine

what conditions must be true to use them. These conditions become the new

goals, or subgoals, for the search. Search continues, working backward through

successive subgoals until (we hope!) it works back to the facts of the problem.

This finds the chain of moves or rules leading from data to a goal, although it

does so in backward order. This approach is called goal-driven reasoning, or

backward chaining, and it recalls the simple childhood trick of trying to solve a

maze by working back from the finish to the start.

 To summarize: data-driven reasoning takes the facts of the problem and

applies the rules or legal moves to produce new facts that lead to a goal; goal-

driven reasoning focuses on the goal, finds the rules that could produce the

goal, and chains backward through successive rules and subgoals to the given

facts of the problem.

 In the final analysis, both data-driven and goal-driven problem solvers

search the same state space graph; however, the order and actual number of

states searched can differ. The preferred strategy is determined by the

properties of the problem itself. These include the complexity of the rules, the

“shape” of the state space, and the nature and availability of the problem data.

All of these vary for different problems.

 As an example of the effect a search strategy can have on the complexity of

search, consider the problem of confirming or denying the statement “I am a

descendant of Thomas Jefferson.” A solution is a path of direct lineage between

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

14

the “I” and Thomas Jefferson. This space may be searched in two directions,

starting with the “I” and working along ancestor lines to Thomas Jefferson or

starting with Thomas Jefferson and working through his descendants.

Some simple assumptions let us estimate the size of the space searched in each

direction. Thomas Jefferson was born about 250 years ago; if we assume 25

years per generation, the required path will be about length 10. As each person

has exactly two parents, a search back from the “I” would examine on the order

of 210 ancestors. A search that worked forward from Thomas Jefferson would

examine more states, as people tend to have more than two children

(particularly in the eighteenth and nineteenth centuries). If we assume an

average of only three children per family, the search would examine on the

order of 310 nodes of the family tree. Thus, a search back from the “I” would

examine fewer nodes. Note, however, that both directions yield exponential

complexity.

 The decision to choose between data- and goal-driven search is based on

the structure of the problem to be solved. Goal-driven search is suggested if:

1. A goal or hypothesis is given in the problem statement or can easily be

formulated. In a mathematics theorem prover, for example, the goal is the

theorem to be proved. Many diagnostic systems consider potential diagnoses

in a systematic fashion, confirming or eliminating them using goal-driven

reasoning.

2. There are a large number of rules that match the facts of the problem and

thus produce an increasing number of conclusions or goals. Early selection

of a goal can eliminate most of these branches, making goal-driven search

more effective in pruning the space (Figure 5-11). In a theorem prover, for

example, the total number of rules used to produce a given theorem is

usually much smaller than the number of rules that may be applied to the

entire set of axioms.

3. Problem data are not given but must be acquired by the problem solver. In

this case, goal-driven search can help guide data acquisition. In a medical

diagnosis program, for example, a wide range of diagnostic tests can be

applied. Doctors order only those that are necessary to confirm or deny a

particular hypothesis.

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

15

Figure (5-11) State space in which goal-directed search effectively prunes extraneous search paths.

Goal-driven search thus uses knowledge of the desired goal to guide the search

through relevant rules and eliminate branches of the space.

Data-driven search (Figure 5-12) is appropriate for problems in which:

1. All or most of the data are given in the initial problem statement.

Interpretation problems often fit this mold by presenting a collection of

data and asking the system to provide a high-level interpretation.

Systems that analyze particular data (e.g., the PROSPECTOR or

Dipmeter programs, which interpret geological data or attempt to find

what minerals are likely to be found at a site) fit the data-driven

approach.

2. There are a large number of potential goals, but there are only a few

ways to use the facts and given information of a particular problem

instance. The DENDRAL program, an expert system that finds the

molecular structure of organic compounds based on their formula, mass

spectrographic data, and knowledge of chemistry, is an example of this.

For any organic compound, there are an enormous number of possible

structures. However, the mass spectrographic data on a compound allow

DENDRAL to eliminate all but a few of these.

3. It is difficult to form a goal or hypothesis. In using DENDRAL, for

example, little may be known initially about the possible structure of a

compound.

Data-driven search uses the knowledge and constraints found in the given data

of a problem to guide search along lines known to be true.

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

16

Figure (5-12) State space in which data-directed search prunes irrelevant data

and their consequents and determines one of a number of possible goals.

To summarize, there is no substitute for careful analysis of the particular

problem to be solved, considering such issues as the branching factor of rule

applications how many new states are generated by rule applications in both

directions?, availability of data, and ease of determining potential goals.

5.3 SEARCHING TECHNIQUES

As we have already discussed that searching our state space forms the core

heart of the AI problem solving. Once a problem is formulated, we need then to

solve it. We can use these techniques in many areas like theorem proving,

game playing, expert system, natural language processing etc. This involves the

tasks like deduction, inference, planning, common sense reasoning etc.

5.3.1 Types of search

As we know in the search methods or techniques, we firstly select one option

and leave the other options if this option is our final goal, (solution) else we

continue selecting, testing and expanding until either solution is found or there

are no more state to be expanded. This will be determined by the search

methods, so we need many different types of search algorithms. Basically there

are two types of searches:

1. Uniformed search or blind search or unguided.

2. Informed or heuristic search or guided.

But please not that all search techniques are distinguished by the order in

which nodes are expanded. Various search strategies are shown in figure 5-13

Figure (5-13) sub area of search types

Search methods

Uniformed search or

blind

Informed or heuristic

Breadth first

search

(BFS)

Depth first

search

(DFS)

Iterative

deepening

Hill

climbing

Best first

search
𝐴∗

 Search

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

17

All of these search strategies have advantage and drawbacks based not on the

types of the problems and it representation but also on the computer resources

that available to solve because each mechanism of search have its own

consideration to manage time and space complexity.

5.3.1.1 Breadth first search (BFS)

It is the simplest form of the blind search. In this technique the root expand

first, then all its successors are expanded and then their successors and so on.

In general, in BFS all nodes are expanded at a given depth in the search

tree before any nodes at the next level are expanded. Search tree generated

by BFS shown in figure (5-14).

 Figure (5-14) Breadth first search on a simple binary tree

We implement breadth-first search using lists, open and closed, to keep track

of progress through the state space. Open, lists states that have been generated

but whose children have not been examined. The order in which states are

removed from open determines the order of the search. Closed records states

already examined.

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

18

Child states are generated by inference rules, legal moves of a game, or other

state transition operators. Each iteration produces all children of the state X and

adds them to open. Note that open is maintained as a queue, or first-in-first-out

(FIFO) data structure. States are added to the right of the list and removed

from the left. This biases search toward the states that have been on open the

longest, causing the search to be breadth-first. Child states that have already

been discovered (already appear on either open or closed) are discarded. If the

algorithm terminates because the condition of the “while” loop is no longer

satisfied (open = []) then it has searched the entire graph without finding the

desired goal: the search has failed.

Time and space complexity of (BFS)

The amount of time taken for generating these nodes is proportional to the

depth, d and branching factor, b and is given by:

𝟏 + 𝒃 + 𝒃𝟐 + 𝒃𝟑 + ⋯ + 𝒃𝒅 + 𝒃𝒅+𝟏 − 𝒃 = 𝑶(𝒃𝒅+𝟏)

Every state has b successors. The root of the search tree generates b nodes at

the first level, each of which generates more b nodes, for total 𝑏2 at the second

level, 𝑏3 at the third level and so on. Suppose the solution at depth d in the

worst case we expand all but the last nod at level d (since the goal itself not

expanded), generating 𝑏𝑑+1 − 𝑏 at level𝑑 + 1 , that’s how the above equation

construct. Thus we have space complexity in the following order 𝑶 (𝒃𝒅).

Advantage of BFS

1. BFS will never get trapped exploring a blind alley

2. It is guaranteed to find a solution if one exists.

Disadvantage of BFS

1. Time complexity and space complexity are both exponential type, this is

big hurdle.

2. All nodes are to be generated in BFS. So, even unwanted nodes are to be

remembered (stored in queue) which is of no practical use of the search.

Depth first search
 The descendant states are added and removed from the left end of open:

open is maintained as a stack, or last-in-first-out (LIFO) structure. The

organization of open as a stack directs search toward the most recently

generated states, producing a depth-first search order. Search tree generated by

BFS shown in figure (5-15).

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

19

 Figure (5-15) Depth first search on a simple binary tree

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

20

Time and space complexity of (DFS)

The amount of time taken for generating these nodes is proportional to the

depth, d and branching factor, b and is given by: 𝑶 (𝒃𝒅).
And space complexity given by linear function of depth, d. So,

Space complexity = 𝑂(𝑑𝑏).

Advantage of DFS

1. Memory requirements in DFS are less as only nodes on the current path

are stored.

2. By chance, DFS may find a solution without examining much of search

space of all.

Disadvantage of DFS

This type of search can go on and on, deeper and deeper into the search space

and thus, we can get lost. This referred to as blind alley.

EXAMPLE OF APPLING BFS & DFS

Let us consider the tree in the figure (5-16): first will apply BFS : U is the goal

Figure (5-16) Graph for breadth- and depth-first search examples.

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

21

1. open = [A]; closed = []

2. open = [B,C,D]; closed = [A]

3. open = [C,D,E,F]; closed = [B,A]

4. open = [D,E,F,G,H]; closed = [C,B,A]

5. open = [E,F,G,H,I,J]; closed = [D,C,B,A]

6. open = [F,G,H,I,J,K,L]; closed = [E,D,C,B,A]

7. open = [G,H,I,J,K,L,M] (as L is already on open); closed = [F,E,D,C,B,A]

8. open = [H,I,J,K,L,M,N]; closed = [G,F,E,D,C,B,A]

9. and so on until either U is found or open = [].

Figure 5.17 illustrates the graph of Figure 5.16 after six iterations of

breadth_first_search. The states on open and closed are highlighted. States not

shaded have not been discovered by the algorithm. Note that open records the

states on the “frontier” of the search at any stage and that closed records states

already visited.

Figure (5-17) Graph of Figure (5-16) at iteration 6 of breadth-first search.

States on open and closed are highlighted.

A trace of depth_first_search on the graph of Figure (5-16) appears below.

The initial states of open and closed are given on line 1. Assume U is the goal

state.
1. open = [A]; closed = []

2. open = [B,C,D]; closed = [A]

3. open = [E,F,C,D]; closed = [B,A]

4. open = [K,L,F,C,D]; closed = [E,B,A]

5. open = [S,L,F,C,D]; closed = [K,E,B,A]

6. open = [L,F,C,D]; closed = [S,K,E,B,A]

7. open = [T,F,C,D]; closed = [L,S,K,E,B,A]

8. open = [F,C,D]; closed = [T,L,S,K,E,B,A]

9. open = [M,C,D], (as L is already on closed); closed = [F,T,L,S,K,E,B,A]

10. open = [C,D]; closed = [M,F,T,L,S,K,E,B,A]

11. open = [G,H,D]; closed = [C,M,F,T,L,S,K,E,B,A]

 and so on until either U is discovered or open = [].

Chapter five: state space search prepared by: Ismael Abdul Sattar
ـــ

22

Figure (5-18) Graph of Figure (5-16) at iteration 6 of depth-first search.

States on open and closed are highlighted.

