

	(2-5) 2021 Jabb Rush
Physical Chemistry-Prope	erties of Gases
Name of a student Signature -	No. 2
University of Mustansiriyah	1 st Semester-2021
Department of Chemistry	1st Exam-paper A
Q1: Circle the right answer for all of the following:	
1: A vessel of 50 mL capacity contains a certain amount of gas a to another vessel of volume 100 mL at 40 °C. What should be Answer: a) 1.0 atm b) 0.85 mmHg c) 0.9 cmHg d) 1 ba 2: What is the right formula of the Van der Waals equation? Answer: a) p = [nRT/(V-nb)] - n(a²/V²) b) P = [nRT/(V-nb)] - V(n²/a²) c	it is pressure?
3: Calculate the temperature of 4.0 mol of a gas occupying 5.0 d Answer: a) 50.3 °C b) 48 K c) 51 °C d) 50.3 K	m ³ at 3.3 bar?
4: Calculate the weight of O ₂ (32 g.mol ⁻¹) in a 4 L cylinder at 9 at Answer: a) 50 kg b) 50 g c) 50 K d) 50 °C 55: Calculate the p _C of He gas, if the p _r and p is 0.44 and 1 atm res	$\left(\begin{array}{c} 30 \\ 0.50 \end{array} \right)$
Answer: a) 2.26 K b) 2.26 atm (c) 2.26 L d) 2.26 mol	9 /5
6: If the repulsion forces are negligible, that means the gas is? Answer: a) real b) noble c) perfect d) compressed	3
7: According to the Dalton's law total mole fraction is equal to? Answer: a) 0.10 mol b) 1.0 mol c) 0.10 d) 1.0	65)
8: What is the partial pressure of a gas in a mixture if the X _i is 0.5	, and the conditions are at STP?
Answer: a) 1.5 Pa b) 0.49 bar c) 0.5 atm d) 0.5	(5/5)
9: If the value of is 0.082 then the unit of temperature is? Answer: a) Kelyin b) Celsius c) Fahrenheit	d) no one of these 5/5
10: According to the Avogadro's law the amount of a gas at STP i Answer: a) 1.00 mol b) 2.00 mol c) 1.00 L d) 2.0	s? 0 mol 8/5

Q2: The air inside a flexible 3.5 L container has a pressure of 115 kPa. What should the volume of the container be increased to in order to decrease the pressure to 625 torr?

Q3: A 3 dm 3 container holds 0.5 moles of N $_2$ gas at 42 $^\circ$ C. What is the pressure inside the container?

12/01/2021

Best wishes

Dr Abduljabbar I. R. Rushdi

V=3.5L P= 115, KPa upic = 625 torr VIP, = V2P2 1 P2 = V2 P. P. $=\frac{3.5?}{1152}\frac{v_2?}{625?}$ 2 = Units V2 (115) = 3.5 x 6257 (V2=19.02 L) U=3dm3 N=0.5 Moles T=42 C+273 = 315/ PV= nRT P= nRT P = 0.5 moles x 0:082 ? x 3.15 R = 43.05 atm (P= 43.05 atm)