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Lecture (2) 

Some Introductory Principles 

2.1 What is a model? 

The atmospheric science researchers interest and carry out measurements of the 

atmosphere. They may do the following: 

 Instrument development, 

 algorithm development,  

 data collection, 

 data reduction,  

 data analysis. 

The data by themselves are just numbers. In order to make physical sense of the 

data, some sort of model is needed.  

 

 

   

And, 

 

 

 

 

   Most models in atmospheric sciences are formulated by starting from basic 

physical principles, such as conservation of mass, conservation of momentum, and 

conservation of thermodynamic energy. Many of these equations are prognostic, 

which means that they involve time derivatives. A simple example is the continuity 

equation, which expresses conservation of mass:   

𝜕𝜌

𝜕𝑡
= −∇. (𝜌𝑉⃑ )                  (2.1) 

Here t is time, 𝜌 is density, 𝑉⃑  is velocity vector. This equation is prognostic in 

which ρ is a prognostic variable.  

Model may be 

Qualitative conceptual model Analytical theory model Numerical model 

Model useful in 

Understanding data Making predictions about the outcomes of measurements 



Dr.  Thaer Obaid Roomi    )2Lecture (Atm. Sci.       Dept. Year/   th/ 4 PredictionsNumerical W.     

(2 - 6) 

 

   A model that contains prognostic equations is solved by time integration, and the 

prognostic variables of such a model must be assigned initial conditions. Any 

variable that is not prognostic is called diagnostic. 

 

2.2 Elementary models (Analytical Models) 

   These are the models that are essentially direct applications of the physical 

principles (such as conservation of mass, conservation of momentum, and 

conservation of thermodynamic energy) to phenomena that occur in the 

atmosphere. These models are “elementary” in the sense that they form the 

conceptual foundation for other modeling work. Elementary models are usually 

analytical. This means that the results that they produce consist of equations. As a 

simple example, consider the ideal gas law 

𝑝 = 𝜌𝑅𝑇                             (2.2) 

Eq. (2.2) can be derived using the kinetic theory of gases, which is an analytical 

model; the ideal gas law can be called a “result” of the model. This simple formula 

can be used to generate numbers, of course; for example, given the density and 

temperature of the air, and the gas constant, we can use Equation (2) to compute 

the pressure. This particular formula is sufficiently simple that we can understand 

what it means just by looking at it. 

 

2.3 Numerical models 

   The results of a numerical model consist of numbers, which represent particular 

“cases”. For example, we can “run” a numerical model to create a weather 

forecast. The forecast consists of a large set of numbers. To perform a new 

forecast, for a different initial condition, we have to run the model again, 

generating a new set of numbers. In order to see everything that the (model) 

atmosphere can do, we would have to run the model for infinitely many cases. In 

this way, numerical models are quite different from analytical models, which can 

describe all possibilities in a single formula. We cannot understand the results of a 

numerical simulation just by looking at the computer code. 

Simply, the numerical model can be defined: is a set of discredited mathematical 

equations, solved on a computer, which represent the behavior of a physical 

system. 

 

Question: What is the difference between analytical and numerical methods? 

Ans: Analytical is exact; numerical is approximate. For example, some differential 

equations cannot be solved exactly (analytic or closed form solution) and we 

must rely on numerical techniques to solve them. 
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2.4 Physical and mathematical errors 

   All models contain errors. It is useful to distinguish between physical errors and 

mathematical errors. For example, we often consider the Navier-Stokes equations 

to be an exact description of the fluid dynamics of air. For various reasons, we are 

unable to obtain exact solutions to the Navier-Stokes equations. To simplify the 

problem, we introduce physical approximations. A second motivation for making 

physical approximations is that the approximate equations may describe the 

phenomena of interest more directly, omitting or “filtering” phenomena of less 

interest, and so yielding a set of equations that is more focused on and more 

appropriate for the problem at hand. For example, we may choose approximations 

that filter gravity waves (e.g., the quasigeostrophic approximation). Thise physical 

approximation introduce physical errors, which may or may not be considered 

acceptable for the intended application of a model. 

   At this point, we have chosen the equation system of the model. Once we have 

settled on a suitable set of physical equations, we must devise mathematical 

methods to solve them. The mathematical methods are almost always approximate 

and introduce errors.  

 

2.5 Discretization  

   Numerical models are “discrete.” This simply means that a numerical model 

involves a finite number of numbers. The process of approximating a continuous 

model by a discrete model is called “discretization.”  

   There are multiple approaches to discretization. This course emphasizes grid-

point methods, which are sometimes called finite-difference methods. The fields of 

the model are defined at the discrete points of a grid. The grid can and usually does 

span time as well as space. Derivatives are then approximated in terms of 

differences involving neighboring grid-point values. A finite-difference equation 

(or set of equations) that approximates a differential equation (or set of equations) 

is called a finite-difference scheme, or a grid-point scheme. Grid-point schemes can 

be derived by various approaches, and the derivation methods themselves are 

sometimes given names. Examples include finite-volume methods, finite-element 

methods, and semi-Lagrangian methods.  

   The major alternative to the finite-difference method is the spectral method, 

which involves expanding the fields of the model in terms of weighted sums of 

continuous, and therefore differentiable, basis functions. Simple examples would 

include Fourier expansions and spherical harmonic expansions. Spectral models 

use grid-point methods to represent the temporal and vertical structures of the 

solution. 
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 If we choose a grid-point method, then we have to choose the shapes of the grid 

cells. Possibilities include rectangles, triangles, and hexagons.  

 Having chosen the shapes of the grid cells, we must choose where to locate the 

predicted quantities on the grid. In many cases, different quantities will be 

located in different places. This is called “staggering.” We will discuss 

systematic approaches to identifying the best staggering choices. 

 For any given grid shape and staggering, we can make numerical schemes that 

are more accurate or less accurate. The meaning of accuracy will be discussed 

later. More accurate schemes have smaller errors, but less accurate schemes are 

simpler and faster.  

 

 
2.6 Review of the vector mathematics 

Scalars: are variables such as temperature and air pressure that have magnitude but not direction. 

Vectors: are variables such as velocity that have magnitude and direction. 

- The velocity vector: 

𝑉⃑ = 𝑖𝑢 + 𝑗𝑣 + 𝑘𝑤     (𝑡𝑜𝑡𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟)                                    (2.3) 

𝑉⃑ ℎ = 𝑖𝑢 + 𝑗𝑣     (ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟)                                  (2.4) 

          And, 𝑢, 𝑣, 𝑤 are the scalar components of velocity: 

𝑢 =
𝑑𝑥

𝑑𝑡
     , 𝑣 =

𝑑𝑦

𝑑𝑡
    , 𝑤 =

𝑑𝑧

𝑑𝑡
                (2.5) 

The magnitude of the wind is its speed. The total and horizontal wind speeds are defined as:           

|𝑉⃑ | = √𝑢2 + 𝑣2 + 𝑤2       ,      |𝑉⃑ ℎ| = √𝑢2 + 𝑣2                            (2.6)   

- The dot product: It is a product of two vectors gives a scalar. 

Let 𝐴  and 𝐵⃑  are two vectors, 

𝐴 . 𝐵⃑ = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧         (2.7)   (How?) 

𝐴 . 𝐵⃑ = |𝐴 ||𝐵⃑ |𝑐𝑜𝑠𝜃           (2.8) 
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Example 1.1: Let 𝐴 = 2𝑖 − 1/2𝑗 − 3𝑘,  and 𝐵⃑ = −3𝑖 + 𝑗 − 1/2𝑘  

Find 𝐴 . 𝐵⃑  and the angle between the two vectors. 

Solution: Using equation (2.7) 

𝐴 . 𝐵⃑ = −6 + (−1/2) + 3/2      = −6.5 + 1.5 = −5 

|𝐴 | = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2 = √4 + 1/4 + 9  = √13.75      

|𝐵⃑ | = √𝐵𝑥
2 + 𝐵𝑦

2 + 𝐵𝑧
2 = √9 + 1 + 1/4  = √10.25  

Using eqn. 2.8: 

𝑐𝑜𝑠𝜃 =
𝐴 . 𝐵⃑ 

|𝐴 ||𝐵⃑ |
=

−5

√13.25 √10.25
=

−5

11.52
= −0.434 

- The Cross Product: it is product of vectors gives a vector: 

𝐴 × 𝐵⃑ = 𝐶                                                        (2.9) 

                   |𝐶 | = |𝐴 × 𝐵⃑ | = |𝐴 ||𝐵⃑ |𝑠𝑖𝑛𝜃                 (2.10) 

      The direction of 𝐶  is perpendicular on the plane of 𝐴  and 𝐵⃑ . 

𝐴 × 𝐵⃑ = 𝐶 = (𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦)𝑖 + (𝐴𝑧𝐵𝑥 − 𝐴𝑥𝐵𝑧)𝑗 + (𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥)𝑘      (2.11) 

- Del Operator: is a vector differential operator denoted by the symbol ∇⃑⃑ : 

                          ∇⃑⃑ = 𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
𝑘

𝜕

𝜕𝑧
                                             (2.12) 

a. Gradient of Scalar (pressure) 

                ∇⃑⃑ 𝑝 = 𝑖
𝜕𝑝

𝜕𝑥
+ 𝑗

𝜕𝑝

𝜕𝑦
𝑘

𝜕𝑝

𝜕𝑧
              (𝑣𝑒𝑐𝑡𝑜𝑟)             (2.13) 

b. Divergence of a Vector (velocity) 

                ∇⃑⃑ . 𝑉⃑ =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
       (𝑠𝑐𝑎𝑙𝑎𝑟) (𝐻𝑜𝑤? )    (2.14) 

c. Curl of a Vector (velocity) 

∇⃑⃑ × 𝑉⃑ = |

𝑖       𝑗      𝑘
𝜕

𝜕𝑥
   

𝜕

𝜕𝑦
   

𝜕

𝜕𝑧
 𝑢     𝑣       𝑤 

| = (
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) 𝑖 + (

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
) 𝑗 + (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) 𝑘     (𝑣𝑒𝑐𝑡𝑜𝑟)   (2.15) 

- Laplacian Operator 

   If Q is any quantity then, 

                                                  ∇⃑⃑ . ∇⃑⃑ 𝑄 ≡ ∇⃑⃑ 2Q                                     (2.16) 

where ∇⃑⃑ 2 (del squared) is the scalar differential operator: 

                                            ∇⃑⃑ 2≡
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
                        (2.17) 

 

  ∇⃑⃑⃑⃑ 2Q is called the Laplacian of Q and appears in several important partial equations of 

mathematical physics. 
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Q1. What are the possible works of the atmospheric science researchers to get and 

handle measurements?  

Q2. List the main types of models, then explain what are they developed for? 

Q3. Define: Numerical model 

Q4. What is the deference between the physical error and mathematical error? 

Give examples.  

Q5. Give the expressions of dot product, cross product, and Laplacian operator. 

 

 

 

Write Matlab code to do the calculations in Example 1. 

 

 

 

1. Prove in detail answering (How?) questions in the lecture. 

2. Write Equation 2.1 in another form (in its components form) 

MATLAB Work 

Homework 

Exercises 


