Experiment (7)

Application of (Lambert – Beer) law

Introduction:

Spectrophotometric methods include measuring the intensity of incident light and transmitted light at a specific wavelength. There are two types of device are the spectral: (1) Single beam (2) Double beam.

Law (Lambert – Beer):

Absorbs equal parts of the light beams by equal changes in the concentration of the absorbed material when the optical path length in the absorbing material constant.

$$A = \mathcal{E} C l$$

$$\%T = (I/I_0) \times 100$$

$$A = log I_o / I$$
$$= log I / T$$

A = absorbance

 $\mathcal{E} = molar \ absorbance \ coefficient \ (mol^{-1}.L.cm^{-1})$

l = long the light path inside the solution (1cm)

T = transmittance

 $C = concentration (mol. L^{-1})$

 $I = the \ intensity \ of \ transmitted \ light$

 I_o = intensity of incident light

Wavelength (λ): The distance between adjacent peaks of a wave packet, that has the standard unit: $nm=10^{-9}m$, $A^o=10^{-10}m$, $\mu m=10^{-6}m$

The greatest wavelength (λmax): The wavelength, which has the highest absorption of the substance.

<u>Light intensity (I):</u> The number of photons absorbed per second.

Photon: Is units of energy.

Beer-Lambert Law Applications

This law finds applications in various fields such as:

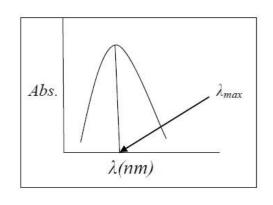
• Analytical chemistry: This analysis mainly concentrates on the separation, quantification and identification of matter by spectrophotometry. There is no involvement of extensive pre-processing of the sample to get the results. For example, bilirubin count in a blood sample can be determined by using a spectrophotometer.

- **Atomic Absorption:** The application of atomic absorption spectrometry (AAS) for the determination of metal concentrations.
- In atmosphere: Solar or stellar radiation in the atmosphere can be described using this law. The law in atmospheric applications has a modified equation.

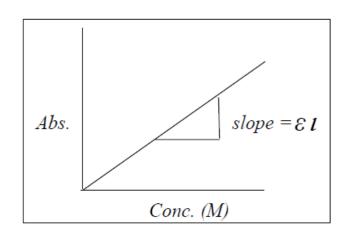
Beer-Lambert Law Limitations

Using this law it becomes easy to study the absorptivity coefficient of the sample when the concentration is low <10mM but as the concentration becomes high >10mM there is a deviation as the electrostatic interactions become more. The value of absorbance should be between (0-1).

Measuring the absorbance of potassium permanganate ($KMnO_4$)


a) Finding (λ_{max}) :

- 1) Prepare dilute solutions of KMnO₄ (0.1M): (1, 3, 5, 7) × 10⁻⁴M in volumetric flask (50ml) according to law ($M_1 V_1 = M_2 V_2$).
- 2) Measure absorbance of the lower concentration (1×10^{-4}) M versus water (blank) in the wave length range (400 600) nm and that each (10nm) to note the highest absorption value read by the device and install it to be (λ_{max}) .


Wave length(nm)	Absorbance
400	
410 _	
600	

<u>b) Finding (ε) & Concentration of unknown:</u>

- 1- When you install (λ_{max}) from step (a) was appointed absorbance of each solution.
- 2- Plot a relationship between absorbance (A) and concentration then determine the molar absorption coefficient (\mathcal{E}) from the slop and the concentration of unknown.

Conc.(mol/L)	Absorbance
1×10 ⁻⁴	
3 x 10 ⁻⁴	
5×10 ⁻⁴	
7 × 10 ⁻⁴	

Discussion:

- 1-Is it possible to measure the potassium permanganate in the ultraviolet region near the visible region?
- 2- What is the difference between ultraviolet and visible spectrum?