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Lecture 6 

The Continuity Equation (the conservation of mass) 

6.1  Introduction 

Mass is not created or destroyed – it is always conserved. This idea is often termed 

continuity. However, even if the mass remains constant, the volume may change. 

Air can expand or flow outward (a process called divergence) or compress 

(convergence). Hence, mass conservation requires considering how the density 

changes in the presence of divergence or convergence to keep the total mass 

constant. 

6.2  Derivation of continuity equation 

Continuity equation is one of the seven equations controlling the atmospheric 

motion and we have to derive it and describe it in three dimensions.  

Consider a small volume of air (𝑉𝑜𝑙 = 𝛿𝑥𝛿𝑦𝛿𝑧) at some fixed point in our Eulerian 

frame of reference. The mass of air in that volume at any instant is simply the 

density multiplied by the volume (𝑚 = 𝑉𝑜𝑙 × 𝜌).  

 

 

 

 

 

A simple continuity equation is: 

𝜕𝑀

𝜕𝑡
= Inflow rate − Outflow rate 

The x-direction mass flux (i.e. the product of x-direction velocity and the density of 

the fluid) at the center of the cube is given by 𝜌𝑢. If we expand this function in a Taylor 

series about the center point, we find that the rate of mass inflow through side A of the 

cube is given by: 
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[𝜌 𝑢 − 
𝜕

𝜕𝑥
(𝜌 𝑢)

𝛿𝑥

2
] 𝛿𝑦𝛿𝑧 

while the rate of mass outflow through side B of the cube is given by: 

[𝜌 𝑢 + 
𝜕

𝜕𝑥
(𝜌 𝑢)

𝛿𝑥

2
] 𝛿𝑦𝛿𝑧 

the rate of accumulation of mass: 

𝜕𝑀𝑥

𝜕𝑡
= Inflow rate − Outflow rate 

𝜕𝑀𝑥
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= [𝜌 𝑢 − 

𝜕
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2
] 𝛿𝑦𝛿𝑧 − [𝜌 𝑢 + 

𝜕
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2
] 𝛿𝑦𝛿𝑧 

𝜕𝑀𝑥

𝜕𝑡
= −

𝜕

𝜕𝑥
(𝜌 𝑢)𝛿𝑥𝛿𝑦𝛿𝑧 

in similarity,  
𝜕𝑀𝑦

𝜕𝑡
= −

𝜕

𝜕𝑦
(𝜌 𝑣)𝛿𝑥𝛿𝑦𝛿𝑧          and      

𝜕𝑀𝑧

𝜕𝑡
= −

𝜕

𝜕𝑧
(𝜌 𝑤)𝛿𝑥𝛿𝑦𝛿𝑧 

so that the net rate of mass accumulation in the cube is represented as: 

𝜕𝑀

𝜕𝑡
= −[

𝜕

𝜕𝑥
(𝜌 𝑢) +

𝜕

𝜕𝑦
(𝜌 𝑣) +

𝜕

𝜕𝑧
(𝜌 𝑤)] 𝛿𝑥𝛿𝑦𝛿𝑧 

dividing by the volume yields: 

𝜕𝜌

𝜕𝑡
= −[

𝜕

𝜕𝑥
(𝜌 𝑢) +

𝜕

𝜕𝑦
(𝜌 𝑣) +

𝜕

𝜕𝑧
(𝜌 𝑤)] = −∇. (𝜌 𝑉⃑ )        (6.1) 

where 𝑉⃑  is the velocity vector. The above expression is called the mass divergence 

form of the mass continuity equation.  

An alternative form of this expression arises by recalling that: 

−∇. (𝜌 𝑉⃑ ) = 𝜌∇. 𝑉⃑ + 𝑉⃑ . ∇𝜌 

so that eq. (6.1) becomes: 

𝜕𝜌

𝜕𝑡
+ 𝑉⃑ . ∇𝜌 + 𝜌∇. 𝑉⃑ = 0        𝑜𝑟      

1

𝜌

𝑑𝜌

𝑑𝑡
+ ∇. 𝑉⃑ = 0          (6.2) 

which is known as the velocity divergence form of the mass continuity equation. 
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This exact same relationship can be derived for a cube of fixed mass, 𝛿𝑀, but varying 

dimensions 𝛿𝑥 , 𝛿𝑦, and 𝛿𝑧.  

Given that the mass in this example is fixed, then 𝑑(𝛿𝑀)/𝑑𝑡 = 0   or by the chain rule: 

𝑑(𝜌𝛿𝑥𝛿𝑦𝛿𝑧)

𝑑𝑡
= 0 =

𝑑𝜌

𝑑𝑡
𝛿𝑥𝛿𝑦𝛿𝑧 + 𝜌

𝑑(𝛿𝑥)

𝑑𝑡
𝛿𝑦𝛿𝑧 + 𝜌

𝑑(𝛿𝑦)

𝑑𝑡
𝛿𝑥𝛿𝑧 + 𝜌

𝑑(𝛿𝑧)

𝑑𝑡
𝛿𝑥𝛿𝑦 

Now 

lim
𝛿𝑥→0

𝑑(𝛿𝑥)

𝑑𝑡
= 𝜕𝑢 

with similar expressions applying for the last two time derivatives and dividing both 

sides by volume gives: 

𝑑𝜌

𝑑𝑡
+ 𝜌

𝜕𝑢

𝑑𝑥
+ 𝜌

𝜕𝑣

𝑑𝑦
+ 𝜌

𝜕𝑤

𝑑𝑧
=

𝑑𝜌

𝑑𝑡
+ 𝜌∇. 𝑉⃑ = 0         (6.3) 

which can be easily rearranged into (6.2).  

6.3 Comprisable and incompressible fluids 

A fluid in which individual parcels experience no change of density following the 

motion (i.e.  
𝑑𝜌

𝑑𝑡
= 0) is known as an incompressible fluid. Conversely, a compressible 

fluid is one in which the density can change along a parcel trajectory. As you might 

guess, the atmosphere is a compressible fluid, but for many atmospheric phenomena, 

the compressibility is not of physical importance. 

In such cases, the mass continuity equation becomes a statement of zero velocity 

divergence(
𝑑𝜌

𝑑𝑡
+ 𝜌∇. 𝑉⃑ = 0 →→    0 + 𝜌∇. 𝑉⃑ = 0  →→   ∇. 𝑉⃑ = 0). We will see later 

that the non-divergence idea is very important in many aspects. 

Note: the Lagrangian flow is a way of looking at fluid motion where the observer follows an 

individual fluid parcel as it moves through space and time. This can be visualized as sitting in a boat 

and drifting down a river. 

The Eulerian flow is a way of looking at fluid motion that focuses on specific locations in the space 

through which the fluid flows as time passes. This can be visualized by sitting on the bank of a river 

and watching the water pass the fixed location. 

The Lagrangian and Eulerian flows are sometimes denoted as the Lagrangian and Eulerian frame 

of reference. 

https://en.wikipedia.org/wiki/Fluid_parcel

