

Foundation of Mathematics II Chapter 3 Rational Numbers and Groups

Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

1. Construction of Rational Numbers

Consider the set

$$V = \{(r,s) \in \mathbb{Z} \times \mathbb{Z} \mid r,s \in Z, s \neq 0\}$$

of pairs of integers. Let us define an equivalence relation on V by putting

$$(r,s) L^* (t,u) \iff ru = st$$

This is an equivalence relation. (Exercise).

Let

$$[r,s] = \{(x,y) \in V \mid (x,y) L^*(r,s)\},\$$

denote the equivalence class of (r, s) and write $[r, s] = \frac{r}{s}$. Such an equivalence class [r, s] is called a **rational number.**

Example 3.1.1.

- (i) $(2, 12) L^* (1, 6)$ since $2 \cdot 6 = 12 \cdot 1$,
- (ii) $(2,12) \mathcal{L}^*(1,7)$ since $2 \cdot 7 \neq 12 \cdot 1$.

(iii)
$$[0,1] = \{(x,y) \in V | 0y = x1\} = \{(x,y) \in V | 0 = x\} = \{(0,y) \in V | y \in \mathbb{Z}\}$$

= $\{(0,\pm 1), (0,\pm 2), \dots\} = [0,y].$

(iv) $(x, 0) \notin V \ \forall x \in \mathbb{Z}$

Definition 3.1.2. (Rational Numbers)

The set of all equivalence classes [r, s] (rational number) with $(r, s) \in V$ is called the **set of rational numbers** and denoted by \mathbb{Q} . The element [0,1] will denoted by 0 and [1,1] by 1.

3.1. 3. Addition and Multiplication on $\mathbb Q$

Addition: \oplus : $\mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$;

$$[r,s] \oplus [t,u] = [ru + ts,su], s,u \neq 0.$$

Multiplication: $\bigcirc: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$;

$$\boxed{[r,s]\odot\ [t,u]=[rt,su]}\,s,u\neq0.$$

Mustansirivah University

```
Remark 3.1.4. The relation i: \mathbb{Z} \to \mathbb{Q}, defined by i(n) = [n, 1] is 1-1 function,
and
```

$$i(n+m)=i(n)\oplus i(m),$$

$$i(n \cdot m) = i(n) \odot i(m)$$
.

Theorem 3.1.5.

- (i) $n \oplus m = m \oplus n, \forall n, m \in \mathbb{Q}$.
- (Commutative property of \oplus)
- (ii) $(n \oplus m) \oplus c = n \oplus (m \oplus c), \forall n, m, c \in \mathbb{Q}$. (Associative property of \oplus)
- (iii) $n \odot m = m \odot n, \forall n, m \in \mathbb{Q}$. (Commutative property of ⊙)
- (iv) $(n \odot m) \odot c = n \odot (m \odot c), \forall n, m, c \in \mathbb{Q}$. (Associative property of \odot)
- (v) $(n \oplus m) \odot c = (n \odot c) \oplus (m \odot c)$ (Distributive law of \bigcirc on \bigoplus)
- (vi) If $c = [c_1, c_2] \in \mathbb{Q}$ and $c \neq [0,1]$, then $c_1 c_2 \neq 0$.

(vii) (Cancellation Law for \oplus).

 $m \oplus c = n \oplus c$, for some $c \in \mathbb{Q} \Leftrightarrow m = n$.

(viii) (Cancellation Law for ⊙).

- $m \odot c = n \odot c$, for some $c \neq 0 \in \mathbb{Q} \Leftrightarrow m = n$.
- (ix) [0,1] is the unique element such that $[0,1] \oplus m = m \oplus [0,1] = m, \forall m \in \mathbb{Q}$.
- (x) [1,1] is the unique element such that $[1,1] \odot m = m \odot [1,1] = m, \forall m \in \mathbb{Q}$. Proof.

(vii) Let
$$m = [m_1, m_2], n = [n_1, n_2], c = [c_1, c_2] \in \mathbb{Q}, m_i, n_i, c_i \in \mathbb{Z}, i = 1,2.$$

$$m \oplus c = n \oplus c$$

$$\leftrightarrow [m_1, m_2] \oplus [c_1, c_2] = [n_1, n_2] \oplus [c_1, c_2]$$

$$\leftrightarrow [m_1c_2 + c_1m_2, m_2c_2] = [n_1c_2 + c_1n_2, n_2c_2]$$
 Def. of \oplus for \mathbb{Q}

$$\leftrightarrow (m_1c_2 + c_1m_2, m_2c_2) L^* (n_1c_2 + c_1n_2, n_2c_2)$$
 Def. of equiv. class

$$\leftrightarrow (m_1c_2 + c_1m_2)n_2c_2 = (n_1c_2 + c_1n_2)m_2c_2$$
 Def. of L^*

$$\leftrightarrow ((m_1 n_2)c_2 + (n_2 m_2)c_1)c_2 = ((n_1 m_2)c_2 + (n_2 m_2)c_1)c_2$$
 Properties of $+$ and \cdot in \mathbb{Z}

$$\leftrightarrow (m_1 n_2)c_2 + (n_2 m_2)c_1 = (n_1 m_2)c_2 + (n_2 m_2)c_1$$
 Cancel

$$\longleftrightarrow (m_1 n_2) c_2 + (n_2 m_2) c_1 = (n_1 m_2) c_2 + (n_2 m_2) c_1$$
 Cancel law for \cdot in \mathbb{Z}

$$\leftrightarrow (m_1 n_2) c_2 = (n_1 m_2) c_2$$
 Cancel. law for+ in $\mathbb Z$

$$\leftrightarrow (m_1 n_2) = (n_1 m_2)$$
 Cancel. law for \cdot in $\mathbb Z$

$$\leftrightarrow (m_1, m_2)L^*(n_1, n_2)$$
 Def. of L^*

$$\leftrightarrow$$
 $[m_1, m_2] = [n_1, n_2]$ Def. of equiv. class

(viii) Let
$$m = [m_1, m_2], n = [n_1, n_2], c = [c_1, c_2] \in \mathbb{Q}, m_i, n_i, c_i \in \mathbb{Z}$$
 and $c \neq [0,1], i = 1,2.$

$$m \odot c = n \odot c$$

$$\leftrightarrow [m_1, m_2] \odot [c_1, c_2] = [n_1, n_2] \odot [c_1, c_2]$$

$$\longleftrightarrow [m_1c_1, m_2c_2] = [n_1c_1, n_2c_2]$$

Def. of \bigcirc for \mathbb{Q}

(i),(ii),(iii),(iv)(v),(vi),(ix),(x) Exercise.

Definition 3.1.6.

- (i) An element $[n, m] \in \mathbb{Q}$ is said to be **positive element if** nm > 0. The set of all positive elements of \mathbb{Q} will denoted by \mathbb{Q}^+ .
- (ii) An element $[n, m] \in \mathbb{Q}$ is said to be **negative element if** nm < 0. The set of all positive elements of \mathbb{Q} will denoted by \mathbb{Q}^- .

Remark 3.1.7. Let [r, s] be any rational number. If s < -1 or s = -1 we can rewrite this number as [-r, -s]; that is, [r, s] = [-r, -s].

Definition 3.1.8. Let $[r,s],[t,u] \in \mathbb{Q}$. We say that [r,s] less than [t,u] and denoted by

 $[r,s] < [t,u] \Leftrightarrow ru < st$, where s,u > 1 or s,u = 1.

Example 3.1.9.

$$[2,5], [7,-4] \in \mathbb{Q}$$
.

$$[2,5] \in \mathbb{Q}^+$$
, since $2 = [2,0]$, $5 = [5,0]$ in \mathbb{Z} and $2 \cdot 5 = [2 \cdot 5 + 0 \cdot 0, 2 \cdot 0 + 5 \cdot 0]$
= $[10,0] = +10 > 0$.

$$[-4,7] \in \mathbb{Q}^-$$
, since $7 = [7,0]$, $-4 = [0,4]$ in \mathbb{Z} and $7 \cdot (-4) = [7 \cdot 0 + 0 \cdot 4, 7 \cdot 4 + 0 \cdot 0]$
= $[0,32] = -32 < 0$.

$$[-4,7] < [2,5]$$
, since $-4 \cdot 5 < 2 \cdot 7$.
 $[7,-4] < [2,5]$, since $[7,-4] = [-7,-(-4)] = [-7,4]$, and $-7 \cdot 5 < 2 \cdot 4$.

2. Binary Operation

Definition 3.2.1. Let A be a non empty set. The relation $*: A \times A \to A$ is called a (closure) binary operation if $a \times (a,b) = a \times b \in A$, $a \times (a,b) = a \times b \in A$; that is, $a \times (a,b) = a \times b \in A$.

Definition 3.2.2. Let A be a non empty set and $*, \cdot$ be binary operations on A. The pair (A,*) is called **mathematical system with one operation**, and the triple $(A,*,\cdot)$ is called **mathematical system with two operations**.

Definition 3.2.3. Let * and \cdot be binary operations on a set A.

- (i) * is called **commutative** if $a * b = b * a, \forall a, b \in A$.
- (ii) * is called **associative** if $(a*b)*c = a*(b*c), \forall a, b, c \in A$
- (iii) · is called **left distributive over** * if

$$(a*b)\cdot c = (a\cdot c)*(b\cdot c), \forall a,b,c\in A$$

(iv) · is called right distributive over * if

$$a \cdot (b * c) = (a \cdot b) * (a \cdot c), \forall a, b, c \in A$$

Definition 3.2.4. Let * be a binary operation on a set A.

(i) An element $e \in A$ is called an identity with respect to * if

$$a * e = e * a = a, \forall a \in A.$$

(ii) If A has an identity element e with respect to * and $a \in A$, then an element b of A is said to be an inverse of a with respect to * if

$$a * b = b * a = e$$

Example 3.2.5. Let *X* be a non empty set.

(i) $(P(X), \bigcup)$ formed a mathematical system with identity \emptyset .

- (ii) $(P(X), \cap)$ formed a mathematical system with identity X.
- (iii) $(\mathbb{N}, +)$ formed a mathematical system with identity 0.
- (iv) $(\mathbb{Z}, +)$ formed a mathematical system with identity 0 and -a an inverse for every $a \neq 0 \in \mathbb{Z}$.
- (iv) $(\mathbb{Z}\setminus\{0\},\cdot)$ formed a mathematical system with identity 1.

Theorem 3.2.6. Let * be a binary operation on a set A.

- (i) If A has an identity element with respect to *, then this identity is unique.
- (ii) Suppose A has an identity element e with respect to * and * is associative. Then the inverse of any element in A if exist it is unique.

Proof.

(i) Suppose e and \hat{e} are both identity elements of A with respect to *.

(1)
$$a * e = e * a = a, \forall a \in A$$
 (Def. of identity)

(2)
$$a * \hat{e} = \hat{e} * a = a, \forall a \in A$$
 (Def. of identity)

(3)
$$\hat{\boldsymbol{e}} * \boldsymbol{e} = \boldsymbol{e} * \hat{\boldsymbol{e}} = \hat{\boldsymbol{e}}$$
 (Since (1) is hold for $a = \hat{\boldsymbol{e}}$)

(4)
$$e * \hat{e} = \hat{e} * e = e$$
 (Since (2) is hold for $a = e$)

(5)
$$e = \hat{e}$$
 (Inf. (3) and (4))

(ii) Let $a \in A$ has two inverse elements say b and c with respect to *. To prove b = c.

(1)
$$a * b = b * a = e$$
 (Def. of inverse (b inverse element of a))

(2)
$$a * c = c * a = e$$
 (Def. of inverse (c inverse element of a))

(3)
$$b = b * e$$
 (Def. of identity)

$$= b * (a * c)$$
 (From (2) Rep(e : $a * c$))

$$= (b * a) * c$$
 (Since * is associative)

$$=e*c$$

(From (i) Rep(b * a: e)) and

= c

(Def. of identity).

Therefore; b = c.

Definition 3.2.7. A mathematical system with one operation, (G,*) is said to be

- (i) semi group if $(a * b) * c = a * (b * c), \forall a, b, c \in G$. (Associative law)
- (ii) group if
- (1) (Associative law) $(a*b)*c = a*(b*c), \forall a, b, c \in G$
- (2) (Identity with respect to *) There exist an element e such that a*e=e* $a=a, \forall a\in A$.
- (3) (Inverse with respect to *) For all $a \in G$, there exist an element $b \in G$ such that a*b=b*a=e.
- (4) If the operation * is commutative on G then the group is called **commutative** group; that is, $a*b=b*a, \forall a,b\in G$.
- **Example 3.2.8.** (i) Let G be a non empty set. $(P(G), \bigcup)$ and $(P(G), \bigcap)$ are not group since it has no inverse elements, but they are semi groups.
- (ii) $(\mathbb{N}, +)$, (\mathbb{N}, \cdot) and (\mathbb{Z}, \cdot) , are not groups since they have no inverse elements, but they are semi groups.
- (iii) $(\mathbb{Z}, +)$, $(\mathbb{Q}\setminus\{0\}, \cdot)$, are commutative groups.

Symmetric Group 3.2.9.

Let $X = \{1,2,3\}$, and $S_3 = \text{Set of All permutations of 3 elements of the set } X$.

3	2	1

There are 6 possiblities and all possible permutations of X as follows:

1				2			3			4			5			6		
	1	2	3	1	3	2	2	1	3	2	3	1	3	1	2	3	2	1

Let $\sigma_i: X \to X$, i = 1,2, ... 6, defined as follows:

$\sigma_1(1) = 1$	$\sigma_2(1) = 2$	$\sigma_3(1) = 3$
$\sigma_1(2) = 2$	$\sigma_2(2) = 1$	$\sigma_3(2) = 2$
$\sigma_1(3) = 3$	$\sigma_2(3) = 3$	$\sigma_3(3) = 1$
$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = ()$	$\sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (12)$	$\sigma_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13)$
$\sigma_4(1) = 1$	$\sigma_{5}(1) = 2$	$\sigma_6(1) = 3$
$\sigma_4(1) = 1$ $\sigma_4(2) = 3$	$\sigma_5(1) = 2$ $\sigma_5(2) = 3$	$ \sigma_6(1) = 3 \sigma_6(2) = 1 $
-	8	

$$S_3 = \{ \sigma_1 = () = e, \sigma_2 = (12), \sigma_3 = (13), \sigma_4 = (23) =, \sigma_5 = (123), \sigma_6 = (132) \}.$$

- X={
- · Define an arbitrary bijection

$$\sigma_4 = (23) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

Note that $R_{240} = R_{120} \circ R_{120} = R_{120}^2$.

Draw a vertical line through the top corner [i], i = 1,2,3 and flip about this line.

1- If i = 1 call this operation $F = F_1$.

2- If i = 2 call this operation F_2 .

3- If i = 3 call this operation F_3 .

Note that $F^2 = F \circ F = \sigma_1$, representing the fact that flipping twice does nothing.

All permutations of a set X of 3 elements form a group under composition \circ of functions, called the **symmetric group** on 3 elements, denoted by S_3 . (Composition of two bijections is a bijection).

	Right										
	o	$\sigma_1 = e$	$\sigma_2 = (12)$	$\sigma_3 = (13)$	$\sigma_4 = (23)$	$\sigma_5 = (123)$	σ_6 =(132)				
	$\sigma_1 = e$	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6				
eft	$\sigma_2 = (12)$	σ_2	е	σ_6	σ_5	σ_4	σ_3				
J	$\sigma_3 = (13)$	σ_3	σ_5	е	σ_6	σ_2	σ_4				
	$\sigma_4 = (23)$	σ_4	σ_6	σ_5	e	σ_3	σ_2				
	$\sigma_5 = (123)$	σ_{5}	σ_3	σ_4	σ_2	σ_6	е				
	$\sigma_6 = (132)$	σ_6	σ_4	σ_2	σ_3	e	σ_5				

$$\sigma_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad \sigma_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \\
\sigma_{2} \circ \sigma_{3} \qquad \sigma_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad \sigma_{5} \circ \sigma_{2} \qquad \sigma_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \\
\sigma_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad \sigma_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

\mathbb{Z}_n modulo Group 3.2.10.

Let \mathbb{Z} be the set of integer numbers, and let n be a fixed positive integer. Let \equiv be a relation defined on \mathbb{Z} as follows:

$$a \equiv b \bmod(n) \Leftrightarrow a - b = kn, \quad \text{for some } k \in \mathbb{Z}$$

$$a \equiv_n b \Leftrightarrow a - b = kn, \quad \text{for some } k \in \mathbb{Z}$$

Equivalently,

$$a \equiv b \mod(n) \Leftrightarrow a = b + kn, \text{ for some } k \in \mathbb{Z}$$

This relation \equiv is an equivalence relation on \mathbb{Z} . (Exercise).

The equivalence class of each $a \in \mathbb{Z}$ is as follows:

$$[a] = \{c \in \mathbb{Z} | c = a + kn, for some \ k \in \mathbb{Z} \} = \overline{a}$$

The set of all equivalence class will denoted by \mathbb{Z}_n .

1- If n = 1.

$$[a] = \{c \in \mathbb{Z} | c = a + k. 1, for some k \in \mathbb{Z}\} = \{c \in \mathbb{Z} | c = a + k, for some k \in \mathbb{Z}\}.$$

$$[0] = \{c \in \mathbb{Z} | c = 0 + k, for some \ k \in \mathbb{Z} \} = \{c \in \mathbb{Z} | c = k, for some \ k \in \mathbb{Z} \}.$$

$$[0] = {\dots, -2, -1, 0, 1, 2, \dots}.$$

Therefore, $\mathbb{Z}_1 = \{[0]\} = \{\overline{0}\}.$

2- If n = 2.

$$[a] = \{c \in \mathbb{Z} | c = a + k.2, for some \ k \in \mathbb{Z}\} = \{c \in \mathbb{Z} | c = a + 2k, for some \ k \in \mathbb{Z}\}.$$

$$[0] = \{c \in \mathbb{Z} | c = 0 + 2k, for some k \in \mathbb{Z}\} = \{c \in \mathbb{Z} | c = 2k, for some k \in \mathbb{Z}\}.$$

$$[0] = {..., -4, -2, 0, 2, 4, ...} = \overline{0}.$$

$$[1] = \{c \in \mathbb{Z} | c = 1 + 2k, for some \ k \in \mathbb{Z} \}$$

$$[1] = {..., -3, -1, 1, 3, 5, ...} = \overline{1}.$$

Therefore, $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}.$

3- If n = 3.

$$[a] = \{c \in \mathbb{Z} | c = a + k.3, for some k \in \mathbb{Z}\} = \{c \in \mathbb{Z} | c = a + 3k, for some k \in \mathbb{Z}\}.$$

$$[0] = \{c \in \mathbb{Z} | c = 0 + 3k, for some \ k \in \mathbb{Z} \} = \{c \in \mathbb{Z} | c = 3k, for some \ k \in \mathbb{Z} \}.$$

$$[0] = {\dots, -6, -3,0,3,6, \dots} = \overline{0}.$$

$$[1] = \{c \in \mathbb{Z} | c = 1 + 3k, for some \ k \in \mathbb{Z} \}$$

$$[1] = {..., -5, -2, 1, 4, 7, ...} = \overline{1}.$$

$$[2] = \{c \in \mathbb{Z} | c = 2 + 3k, for some \ k \in \mathbb{Z} \}$$

$$[2] = {..., -4, -1, 2, 5, 8, ...} = \overline{2}.$$

Thus,
$$\mathbb{Z}_3 = \{\bar{0}, \bar{1}, \bar{2}\}.$$

Remark 3.2.11. $\mathbb{Z}_n = \{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}, \dots, \overline{n-1}\}$ for all $n \in \mathbb{Z}^+$.

Operation on \mathbb{Z}_n 3.2.12.

Addition operation $+_n$ on \mathbb{Z}_n

$$[a] +_n [b] = [a + b].$$

Multiplication operation \cdot_n on \mathbb{Z}_n

$$[a] \cdot_n [b] = [a \cdot b].$$

 $(\mathbb{Z}_n, +_n)$ formed a commutative group with identity $\overline{0}$.

 (\mathbb{Z}_n, \cdot_n) formed a commutative semi group with identity $\overline{1}$.

Example 3.2.13.

If $\mathbf{n} = \mathbf{4}$. $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$.

+4	$\overline{0}$	1	$\bar{2}$	3
$\overline{0}$	$\overline{0}$	1	2	3
1	1	2	3	$\overline{0}$
2	2	3	$\bar{0}$	1
3	3	$\bar{0}$	1	2

$$\overline{3} + 4\overline{2} = [3 + 2] = [5] \equiv_4 [1] \text{ since } 5 = 1 + 4 \cdot 1.$$

•4	$\bar{0}$	1	2	3
$\overline{0}$	$\bar{0}$	$\overline{0}$	$\overline{0}$	$\bar{0}$
1	$\overline{0}$	1	2	3
$\bar{2}$	$\bar{0}$	$\bar{2}$	$\bar{0}$	$\bar{2}$
3	$\bar{0}$	3	2	1

$$\bar{3} \cdot_4 \bar{2} = [3 \cdot 2] = [6] \equiv_4 [2]$$
 since $6 = 2 + 4 \cdot 1$.

Exercise 3.2.14. Write the elements of \mathbb{Z}_5 and then write the tables of addition and multiplication of \mathbb{Z}_5 .