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Lecture 4 

The Spherical Coordinates  

 

4.1 Momentum Equations in Spherical Coordinates 

The equation of motion (and the components forms) which we have taken in the 

previous lectures are to be applied for Cartesian coordinates. However, our earth is a 

globe and we should consider the spherical coordinates instead. Hence, it is convenient 

to expand the momentum equation(s) of motion in spherical coordinates. The 

coordinate axes are then (𝜆, 𝜙, 𝑧), where 𝜆 is longitude, 𝜙 is latitude, and z is the 

vertical distance above the surface. If the unit vectors i, j, and k are now taken to be 

directed eastward, northward, and upward, respectively. Then:  

𝑉⃑ ≡ 𝑖𝑢 + 𝑗𝑣 + 𝑘𝑤  

where 𝑢, 𝑣 𝑎𝑛𝑑 𝑤 are defined as: 

𝑢 ≡ 𝑟 cos𝜙 
𝑑𝜆

𝑑𝑡
      ,   𝑣 ≡ 𝑟 

𝑑𝜙

𝑑𝑡
  ,      𝑤 ≡  

𝑑𝑧

𝑑𝑡
                 (4.1) 

Here, 𝑟 is the distance to the center of earth, which is related to 𝑧 by = 𝑎 + 𝑧 , where 

𝑎 is the radius of the earth. Traditionally, the variable 𝑟 in (4.1) is replaced by the 

constant 𝑎 for notational simplicity (Why?).  

It is conventional to define x and y as eastward and northward distance such that: 

𝑑𝑥 = 𝑎 cos𝜙 𝑑𝜆            𝑎𝑛𝑑       𝑑𝑦 = 𝑎 𝑑𝜙 

Thus, 𝑢 ≡
𝑑𝑥

𝑑𝑡
      𝑎𝑛𝑑 𝑣 ≡

𝑑𝑦

𝑑𝑡
    are the horizontal velocity components. 

The (x, y, z) coordinate system defined in this way is not a Cartesian coordinate system 

because the directions of the i,j,k  unit vectors are not constant as function of position 

on the spherical earth (since they rotate with Earth). Thus: 

𝑑𝑉⃑ 

𝑑𝑡
= 𝑖

𝑑𝑢

𝑑𝑡
+ 𝑗

𝑑𝑣

𝑑𝑡
+ 𝑘

𝑑𝑤

𝑑𝑡
+ 𝑢

𝑑𝑖

𝑑𝑡
+ 𝑣

𝑑𝑗

𝑑𝑡
+ 𝑤

𝑑𝑘

𝑑𝑡
            (4.2) 

Note that we differentiate the components of velocity (u, v, and w) and also the unit 

vectors (i, j, and k).  
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Now, we first consider 
𝑑𝑖

𝑑𝑡
 and by expanding the total derivative and noting that i is a 

function only of x: 

𝑑𝑖

𝑑𝑡
= 𝑢

𝜕𝑖

𝜕𝑥
 

 

From Figure (4.1), we see by similarity of triangles: 

lim
𝛿𝑥→0

|𝛿𝑖|

𝛿𝑥
= |

𝜕𝑖

𝜕𝑥
| =

1

𝑎 cos𝜙
 

and that the vector 
𝜕𝑖

𝜕𝑥
 is directed toward the  

axis of rotation. Thus, as is illustrated in Fig (4.2): 

𝜕𝑖

𝜕𝑥
=

1

𝑎 cos𝜙
(𝑗 sin𝜙 − 𝑘 cos𝜙) 

Therefore: 

d𝑖

𝑑𝑡
=

𝑢

𝑎 cos𝜙
(𝑗 sin𝜙 − 𝑘 cos𝜙)            (4.3) 

Considering now 
d𝑗

𝑑𝑡
 , we note that 𝑗 is a function only  

of 𝑥 and y. Thus, with the aid of Fig. (4.3) we see that  

for eastward motion |𝛿𝑗| = 𝛿𝑥/(𝑎/ tan𝜙). 

Because the vector 
d𝑗

𝑑𝑥
 is directed in the negative 𝑥 direction, 

We have then: 

 

d𝑗

𝑑𝑥
= −

tan𝜙

𝑎
𝑖 

From Fig. 4.4 it is clear that for northward motion 

|𝛿𝑗| = 𝛿𝜙 , and  𝛿𝑦 = 𝑎 𝛿𝜙 and 𝛿𝑗 is directed downward so 

that: 

d𝑗

𝑑𝑦
= −

𝑘

𝑎
 

 

 

Δ𝜆 

δ𝑖 

δ𝜆 

Δ𝑖 

δ𝑥 

Fig. (4.1) 

Fig. (4.2) Resolution of  

Δ𝑖 in Fig. 9.1 into northward 

and vertical components 

Δ𝑖 

Fig. (4.3) Dependence of j on 

longitude 

𝑑𝑖

𝑑𝑡
=

𝜕𝑖

𝜕𝑡
+ 𝑢

𝜕𝑖

𝜕𝑥
+ 𝑣

𝜕𝑖

𝜕𝑦
+ 𝑤

𝜕𝑖

𝜕𝑧
 

 𝑑𝑥 = 𝑎 cos𝜙 𝑑𝜆  

𝑑𝜆

𝑑𝑥
=

1

𝑎 cos𝜙
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Hence,  

d𝑗

𝑑𝑡
= −

𝑢 tan𝜙

𝑎
𝑖 −

𝑣

𝑎
𝑘               (4.4) 

Finally, by similar arguments it can be shown that: 

d𝑘

𝑑𝑡
= 𝑖

𝑢

𝑎
+ 𝑗

𝑣

𝑎 
                              (4.5) 

Substituting (4.3)-(4.5) into (4.2) and rearranging the terms, 

We obtain the spherical polar coordinate expansion of the acceleration following the 

relative motion: 

𝑑𝑉⃑ 

𝑑𝑡
= (

𝑑𝑢

𝑑𝑡
−

𝑢𝑣 tan𝜙

𝑎
+

𝑢𝑤

𝑎
) 𝑖 + (

𝑑𝑣

𝑑𝑡
+

𝑢2 tan𝜙

𝑎
+

𝑣𝑤

𝑎
) 𝑗 + (

𝑑𝑤

𝑑𝑡
−

𝑢2 + 𝑣2

𝑎
 ) 𝑘      (4.6) 

From Equation (3.1) in Lecture (3) (please see the equation in components form not in vector): 

𝑑𝑉⃑ 

𝑑𝑡
= −

1

𝜌
∇p + 𝑔 + F⃑ 𝑟 − 2Ω⃑⃑  × 𝑉⃑   

By substituting the left side from equation (4.6) and the right side terms from lecture 

(3) and decomposed the equation into the three directions: 

𝑑𝑢

𝑑𝑡
−

𝑢𝑣 tan𝜙

𝑎
+

𝑢𝑤

𝑎
= −

1

𝜌

𝜕𝑝

𝜕𝑥
−

1

𝜌

𝜕

𝜕𝑧
(𝜇

𝜕𝑢

𝜕𝑧
) + 2Ω𝑤 cos𝜙 − 2Ω𝑣 sin𝜙         (4.7) 

𝑑𝑣

𝑑𝑡
+

𝑢2 tan𝜙

𝑎
+

𝑣𝑤

𝑎
= −

1

𝜌

𝜕𝑝

𝜕𝑦
−

1

𝜌

𝜕

𝜕𝑧
(𝜇

𝜕𝑣

𝜕𝑧
) − 2Ω𝑢 sin𝜙                                   (4.8) 

𝑑𝑤

𝑑𝑡
−

𝑢2 + 𝑣2

𝑎
=  −

1

𝜌

𝜕𝑝

𝜕𝑧
−

1

𝜌

𝜕

𝜕𝑧
(𝜇

𝜕𝑤

𝜕𝑧
) − 𝑔 + 2Ω𝑢 cos𝜙 𝑘                                 (4.9) 

Notes: 

1. The terms proportional to 1/a on the left side of momentum equations above are called 

curvature terms; they arise due to the curvature of the earth. Because they are nonlinear 

(i.e., they are quadratic in the dependent variable), they are difficult to handle in 

theoretical analyses. Fortunately, the curvature terms are unimportant for midlatitude 

synoptic scale motions. 

2. Even if we neglect the curvature terms, the equations still nonlinear. This is obvious 

when we expand the total derivative (
𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
). 

3. The presence of nonlinear advection processes is one reason that dynamic meteorology 

is an interesting and challenging subject.  

Fig. (4.4) Dependence of j 

on latitude 


