
Cryptography
And

Cryptanalysis

Ph. D. Course/ 2019-2020

Introduced By

Dr. Faez Hassan Ali

Linear complexity (LC) Criterion
Definition: The linear complexity of an infinite binary sequence S, denoted
LC(S), is defined as follows:

(i). if S is the zero sequence S = 0, 0, 0, . . . , then LC(S) = 0;

(ii). if no LFSR generates S, then LC(S) = ;

(iii). Otherwise, LC(S) is the length of the shortest LFSR that generates S.

Definition: The LC of a finite binary sequence Sn, denoted LC(Sn), is the
length of the shortest LFSR that generates a sequence having Sn as its first n
terms.

Remark (properties of linear complexity) Let S and T be binary sequences.

(i). For any n ≥ 1, the LC of the subsequence Sn satisfies 0≤ LC(Sn) ≤ n.

(ii). LC(Sn) = 0 if and only if Sn is the zero sequence of length n.

(iii). LC(Sn) = n if and only if Sn = 0, 0, 0, . . . , 0, 1.

(iv). If S is periodic with period N, then LC(S) ≤ N.

(v). LC(ST)≤LC(S)+LC(T).

Linear complexity (LC) Criterion
Linear Complexity Profile
Definition: If Sn = s0, s1,..., sn−1 is a finite binary sequence, the sequence LC1,
LC2,...,LCn is called the LC profile of Sn.
The LC profile of a sequence S can be graphed by plotting the points (N,LCN), N≥1,
in the N×LC plane and joining successive points by a horizontal line followed by a
vertical line, if necessary. The graph of a LC profile is non-decreasing. Moreover, a
(vertical) jump in the graph can only occur from below the line LC=N/2; if a jump
occurs, then it is symmetric about this line. It's important to show that the
expected LC of a random sequence should closely follow the line LC=N/2.
Example: Consider
S20=1,0,0,1,0,0,1,1,1,1,0,0,0,1,0,0,1,1,1,0.
LC profile of S is 1, 1, 1, 3, 3, 3, 3, 5, 5, 5, 6, 6, 6,
8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 11, 14, 14, 14, 14,
15, 15, 15, 17, 17, 17, 18, 18, 19, 19, 19, 19,….
Figure (1) shows the graph of the LC profile of S.

Figure (1): Linear complexity profile of the 20-periodic sequence.

Example (H.W.): the LC profile of the sequence S defined as:

 1, if i = 2
j
 − 1 for some j ≥ 0,

si =

 0, otherwise.

the line LC=N/2 as closely as possible. That is, LC(S
N
)=(N+1)/2 for all

N ≥ 1. However, the sequence S is clearly non-random.

Linear complexity (LC) Criterion
Berlekamp-Massey Algorithm

Berlekamp-Massey algorithm is an efficient algorithm
for determining the LC of a finite binary sequence Sn
of length n. The algorithm takes n iterations, with the
Nth iteration computing the LC of the subsequence SN
consisting of the first N terms of Sn.

Definition: Consider the finite binary sequence
SN+1=s0,s1,...,sN−1, sN. For C(D)=1+c1D+…+crD

r, let
r,C(D) be an LFSR that generates the subsequence
SN =s0, s1,..., sN−1. The next discrepancy dN is the
difference between sN and the (N+1)st term
generated by the LFSR:

 dN=(sN +




r

i

iNisc
1

) mod 2

Linear complexity (LC) Criterion

Remark: At the end of each iteration of step 2,
<r,C(D)> is an LFSR of smallest length which generates
SN. Hence, Berlekamp-Massey algorithm can also be
used to compute the LC profile of a finite sequence.

Berlekamp-Massey algorithm
INPUT: a binary sequence S

n
 = s0, s1, s2,…, sn−1 of length n.

OUTPUT: the linear complexity L(S
n
) of S

n
, 0 ≤ L(S

n
) ≤ n.

PROCESS: 1. Initialization. C(D)←1, r←0, m← −1, B(D)←1, N←0.

2. While (N <n) do the following:

 2.1Compute the next discrepancy d. d←(sN+




L

1i
iNi

sc)mod 2.

 2.2 If d = 1 then do the following:

T (D)←C(D), C(D)←C(D) + B(D).D
N−m

.

If r≤ N/2 then r←N + 1 − r, m←N, B(D)←T (D).

 2.3 N←N + 1.

3. Return(r).

Linear complexity (LC) Criterion
Example Table shows the steps of Berlekamp-Massey
algorithm for computing the LC of the binary sequence Sn = 0,
0, 1, 1, 0, 1, 1, 1, 0 of length n=9. This sequence is found to
have LC 5, and an LFSR which generates it is 5,1+ D3 + D5.
Remark: Let Sn be a finite binary sequence of length n, and let
the LC of Sn be LC. Then there is a unique LFSR of length LC
which generates Sn if and only if LC ≤ n/2.

sN d T(D) C(D) r M B(D) N

-

0

0

1

1

0

1

1

1

0

-

0

0

1

1

1

1

0

1

1

-

-

-

1

1+D
3

1+D+D
3

1+D+D
2
+D

3

1+D+D
2
+D

3

1+D+D
2

1+D+D
2
+D

5

1

1

1

1+D
3

1+D+D
3

1+D+D
2
+D

3

1+D+D
2

1+D+D
2

1+D+D
2
+D

5

1+D
3
+D

5

0

0

0

3

3

3

3

3

5

5

-1

-1

-1

2

2

2

2

2

7

7

1

1

1

1

1

1

1

1

1+D+D
2

1+D+D
2

0

1

2

3

4

5

6

7

8

9

Linear complexity (LC) Criterion
Definition : product of m distinct variables is called an mth order
product of the variables. Every Boolean function f(x1,x2,...,xn) can
be written as a modulo 2 sum of distinct mth order products of its
variables, 0≤m≤n; this expression is called the algebraic normal
form of f. The nonlinear order of f is the maximum of the order of
the terms appearing in its algebraic normal form.
Example: the Boolean function
f(x1,x2,x3,x4,x5)=1x2x3x4x5x1x3x4x5 has nonlinear order 4.
Remark: Suppose that n maximum-length LFSRs, whose lengths
r1,r2,…,rn are pairwise distinct and greater than 2, are combined
by a nonlinear function f(x1,x2,...,xn) which is expressed in
algebraic normal form. Then the LC of the keystream is
f(r1,r2,…,rn). (The expression f(r1,r2,…,rn) is evaluated over the
integers rather than over Z2).
Let CF=Fn, so that in general LC(S)Fn*(r1,r2,…,rn), Fn* is the
integer function corresponding to Fn s.t. Fn*:Z+Z+. Since the 2nd
and 3rd conditions are hold, then: LC(S)=Fn*(r1,r2,…,rn)

Linear complexity (LC) Criterion
Notice that LC(S) depends on LFSR and CF units. The basic condition to construct
efficient KG is “Lengths of combined LFSR’s must be long as possible”. This condition
will contributes to make S has maximum period. The other condition is “CF has high
non-linear order”, so if the five conditions are holding, this will make S has a high LC
to pass the computer ability in exhaustive search or brute forces attack.

Now when applying the LC criterion on the studied cases we get:

Example: Table describes LC for different examples of the three study cases

1. n-LKG: S has LC(S)=


n

1i
i

r .

2. n-PKG: S has LC(S)=


n

1i
i

r .

3. 3-BKG: S has LC(S)=r1r2+ r1r3 + r2r3.

n ri
LC(S)

n-LKG n-PKG 3-BKG

3 2,3,5 10 30 31

3 4,5,7 16 140 83

4 2,3,5,7 17 210 -----

Correlation Immunity (CI) Criterion

Remark: If a Boolean function f(x1,x2,...,xn) is mth-order CI, where 1≤m<n,
then the nonlinear order of f is at most n−m. Moreover, if f is balanced then
the nonlinear order of f is at most n−m−1 for 1≤m≤n−2.
The tradeoff between high LC and high CI can be avoided by permitting
memory in the nonlinear combination function f.
For combination generators, the correlation attack can be prevented by
using a CF f whose output is not correlated to any of its inputs. Such
functions are called (n-1)-order correlation-immune.
For the 3-LKG, the CI(S)=n-1=2, but for the 3-PKG, the CI(S)=0, since the
non-linear order of product system is 3.

Correlation Immunity (CI) Criterion
The CI order can be calculated from logical truth table for CF depending on
calculating correlation probability, notice that CI depends on CF unit only and
there is little effect of LFSR unit. Therefore, the condition to obtain efficient KG’s
“Choosing CF with maximum order correlation immune”, this condition is not
essential since the correlation (if it exist) can prevented by using some ways.
Moreover, Staffelbach, mentioned that to prevent correlation attack (the other
condition to obtain efficient KG’s) “Using long LFSR’s with maximum tapping
number of connection polynomial”.

System

Input Output

x1 x2 x3 FL FP FB

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 0 0 1

1 0 0 1 0 0

1 0 1 0 0 1

1 1 0 0 0 1

1 1 1 1 1 1

Linear 0.5 0.5 0.5

Correlation Probability Product 0.625 0.625 0.625

Brüer 0.75 0.75 0.75

