

Intelligent Agents and their Environments

Michael Royatsos

InformaticsUniversity of Edinburgh

12 January 2016

Informatics 2D

Examples of Agents 1

- Agent: mail sorting robot
- Environment: conveyor belt of letters
- · Goals: route letter into correct bin
- Percepts: array of pixel intensities
- Actions: route letter into bin

Informatics 2D

An agent:

- Perceives its environment,
- Through its sensors,
- Then achieves its goals
- By acting on its environment via actuators.

Informatics 2D

Examples of Agents 2

- Agent: intelligent house
- Environment:
 - occupants enter and leave house,
 - occupants enter and leave rooms;
 - daily variation in outside light and temperature
- Goals: occupants warm, room lights are on when room is occupied, house energy efficient
- Percepts: signals from temperature sensor, movement sensor, clock, sound sensor
- Actions: room heaters on/off, lights on/off

- · Agent: automatic car.
- Environment: streets, other vehicles, pedestrians, traffic signals/lights/signs.
- Goals: safe, fast, legal trip.
- Percepts: camera, GPS signals, speedometer, sonar.
- Actions: steer, accelerate, brake.

Side info: http://en.wikipedia.org/wiki/2005_DARPA_Grand_Challenge

Simple Reflex Agents

function SIMPLE-REFLEX-AGENT(percept) returns action

persistent: rules (set of condition-action rules)

state ← INTERPRET-INPUT(percept)

rule ← RULE-MATCH(state, rules)

action ← rule.ACTION

return action

Informatics 2D

Simple Reflex Agents

• Implement by condition-action rules.

Example:

- Agent: Mail sorting robot
- Environment: Conveyor belt of letters
- Rule: e.g. city=Edin → put Scotland bag

Informatics 2D

Model-Based Reflex Agents

- Action may depend on history or unperceived aspects of the world.
- · Need to maintain internal world model.

Example:

- · Agent: robot vacuum cleaner
- · Environment: dirty room, furniture.
- Model: map of room, which areas already cleaned.
- Sensor/model tradeoff.

function REFLEX-AGENT-WITH-STATE(percept) returns action

persistent: *state*, description of current world state *model*. description of how the next state depends on

current state and action

rules, a set of condition-action rules

action, the most recent action, initially none

state ← UPDATE-STATE(state, action, percept, model)

 $rule \leftarrow \text{RULE-MATCH}(\textit{state}, \; rules)$

 $action \leftarrow rule.ACTION$

return action

Informatics 2D

Goal-Based Agents

Informatics 2D

Goal-Based Agents

- · Agents so far have fixed, implicit goals.
- · We want agents with variable goals.
- · Forming plans to achieve goals is later topic.

Example:

- Agent: robot maid
- Environment: house & people.
- Goals: clean clothes, tidy room, table laid, etc

Informatics 2D

Utility-Based Agents

- · Agents so far have had a single goal.
- · Agents may have to juggle conflicting goals.
- · Need to optimise utility over a range of goals.
- · Utility: measure of goodness (a real number).
- Combine with probability of success to get expected utility.

Example:

- Agent: automatic car.
- Environment: roads, vehicles, signs, etc.
- Goals: stay safe, reach destination, be quick, obey law, save fuel, etc.

Utility-Based Agents

We will not be covering utility-based agents, but this topic is discussed in Russell & Norvig. Chapters 16 and 17

Informatics 2D

Mid Lecture Exercise

Consider a chess playing program. What sort of agent would it need to be?

Informatics 2D

Learning Agents

- Generate problems which will test performance.
- Perform activities according to rules, goals, model, utilities, etc.
- Monitor performance and identify non-optimal activity.
- Identify and implement improvements.

We will not be covering learning agents, but this topic is discussed in Russell & Norvig, Chapters 18-21.

Informatics 2D

Solution

- Simple-reflex agent: but some actions require some memory (e.g. castling in chess http://en.wikipedia.org/wiki/Castling).
- · Model-based reflex agent: but needs to reason about future.
- · Goal-based agent: but only has one goal.
- Utility-based agent: might consider multiple goals with limited lookahead.

Types of Environment 1

• Fully Observable vs. Partially Observable:

Observable: agent's sensors describe environment fully. Playing chess with a blindfold.

Deterministic vs. Stochastic:

Deterministic: next state fully determined by current state and agent's actions.

Chess playing in a strong wind.

An environment may appear stochastic if it is only partially observable.

Informatics 2D

Types of Environment 3

Discrete vs. Continuous:

Discrete: percepts, actions and episodes are discrete. Chess vs robot car.

Single Agent vs. Multi-Agent:

How many objects must be modelled as agents. Crossword vs poker.

Element of choice over which objects are considered agents.

Informatics 2D

Types of Environment 2

· Episodic vs. Sequential:

Episodic: next episode does not depend on previous actions.

Mail-sorting robot vs crossword puzzle.

• Static vs. Dynamic:

Static: environment unchanged while agent deliberates.

Robot car vs chess.

Crossword puzzle vs tetris.

Informatics 2D

Types of Environment 4

- An agent might have any combination of these properties:
 - from "benign" (i.e., fully observable, deterministic, episodic, static, discrete and single agent)
 - to "chaotic" (i.e., partially observable, stochastic, sequential, dynamic, continuous and multi-agent).
- What are the properties of the environment that would be experienced by
 - a mail-sorting robot?
 - an intelligent house?
 - a car-driving robot?

Summary

- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents
- Learning agents
- Properties of environments