Lecture 5

The Gravitational Force

4.1 The Gravitational Force

Newton's law of the universal gravitation states, "Any two elements of mass in the universe attract each other with a force proportional to their masses and inversely to the square of the distance between them."

Newton's law can be written in a vectorial form as:

$$\vec{g} = -G \frac{m_1 m_2}{r^3} \; \vec{r}$$

where \vec{q} is the attraction of m_1 on m_2 (force of gravitation)

 \vec{r} is the position vector from \mathbf{m}_1 to \mathbf{m}_2

G is the universal gravitational constant = $6.66 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$

If we assume $m_2=1 \text{ kg}$,

$$\vec{g} = -G \frac{m_1}{r^3} \; \vec{r}$$

"total mass of Earth is equal to 5.988×10²⁴ kg"

The acceleration due to the gravitational force at the surface of Earth (r=a=6378 km):

$$\vec{g}_* = -G\frac{M}{a^2}\,\vec{r}$$

At some altitude Z above the surface of the earth, the acceleration due to the gravitational force is:

$$\vec{g}_* = -G \frac{M}{(a+z)^2} \, \vec{r}$$

 \vec{r} is the position vector from the center of Earth to the parcel in the atmosphere.

 \vec{g}_* is directed toward the center of Earth.