Lecture 5 ## The Gravitational Force ## 4.1 The Gravitational Force Newton's law of the universal gravitation states, "Any two elements of mass in the universe attract each other with a force proportional to their masses and inversely to the square of the distance between them." Newton's law can be written in a vectorial form as: $$\vec{g} = -G \frac{m_1 m_2}{r^3} \; \vec{r}$$ where \vec{q} is the attraction of m_1 on m_2 (force of gravitation) \vec{r} is the position vector from \mathbf{m}_1 to \mathbf{m}_2 G is the universal gravitational constant = $6.66 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$ If we assume $m_2=1 \text{ kg}$, $$\vec{g} = -G \frac{m_1}{r^3} \; \vec{r}$$ "total mass of Earth is equal to 5.988×10²⁴ kg" The acceleration due to the gravitational force at the surface of Earth (r=a=6378 km): $$\vec{g}_* = -G\frac{M}{a^2}\,\vec{r}$$ At some altitude Z above the surface of the earth, the acceleration due to the gravitational force is: $$\vec{g}_* = -G \frac{M}{(a+z)^2} \, \vec{r}$$ \vec{r} is the position vector from the center of Earth to the parcel in the atmosphere. \vec{g}_* is directed toward the center of Earth.