=

1.10 PROBLEMS

The following problems can be solved by writing commands in the Command Window, or by writing a program in a script file and then executing the file.

1. Calculate:

(a)	$22 + 5.1^2$	(b)	44	8 ²	$\frac{99}{3.9^2}$
	$\frac{22+5.1^2}{50-6.3^2}$	(b)	7	5	3.9 ²

2. Calculate:

(a)
$$\frac{\sqrt{41^2-5.2^2}}{e^5-100.53}$$
 (b) $\sqrt[3]{132} + \frac{\ln(500)}{8}$

2

Chapter 1: Starting with MATLAB

3. Calculate:

(a)
$$\frac{14.8^3 - 6.3^2}{(\sqrt{13} + 5)^2}$$
 (b) $45\left(\frac{288}{9.3} - 4.6^2\right) - 1065e^{-1.5}$

4. Calculate:

(a)
$$\frac{24.5 + 64/3.5^2 + 8.3 \cdot 12.5^3}{\sqrt{76.4} - 28/15}$$
 (b) $(5.9^2 - 2.4^2)/3 + \left(\frac{\log_{10} 12890}{e^{0.3}}\right)$

5. Calculate:

(a)
$$\cos\left(\frac{7\pi}{9}\right) + \tan\left(\frac{7}{15}\pi\right)\sin(15^\circ)$$
 (b) $\sin^2 80^\circ - \frac{(\cos 14^\circ \sin 80^\circ)^2}{\sqrt[3]{0.18}}$

- 6. Define the variable x as x = 6.7, then evaluate:
 - (a) $0.01x^5 1.4x^3 + 80x + 16.7$ (b) $\sqrt{x^3 + e^x 51/x}$
- 7. Define the variable t as t = 3.2, then evaluate: (a) $56t - 9.81\frac{t^2}{2}$ (b) $14e^{-0.1t}\sin(2\pi t)$
- 8. Define the variables x and y as x = 5.1 and y = 4.2, then evaluate:

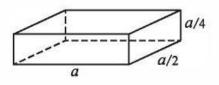
(a)
$$\frac{3}{4}xy - \frac{7x}{y^2} + \sqrt{xy}$$
 (b) $(xy)^2 - \frac{x+y}{(x-y)|^2} + \sqrt{\frac{x+y}{2x-y}}$

9. Define the variables a, b, c, and d as:

$$a = 12, \ b = 5.6, \ c = \frac{3a}{b^2}, \text{ and } d = \frac{(a-b)^c}{c}, \text{ then evaluate:}$$

$$(a) \quad \frac{a}{b} + \frac{d-c}{d+c} - (d-b)^2 \qquad (b) \quad e^{\frac{d-c}{a-2b}} + \ln\left(\left|c-d+\frac{b}{a}\right|\right)$$

- 10. A sphere has a radius of 24 cm. A rectangular prism has sides of a, a/2, and a/4.
 - (a) Determine a of a prism that has the same volume as the sphere.
 - (b) Determine a of a prism that has the same surface area as the sphere.

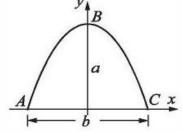


1.10 Problems

11. The arc length of a segment of a parabola ABC of an ellipse with semi-minor axes a and b is given approximately by:

$$L_{ABC} = \frac{1}{2}\sqrt{b^2 + 16a^2} + \frac{b^2}{8a} \ln\left(\frac{4a + \sqrt{b^2 + 16a^2}}{b}\right)$$

(a) Determine L_{ABC} if $a = 11$ in. and $b = 9$ in



12. Two trigonometric identities are given by:

(a) $\sin 5x = 5\sin x - 20\sin^3 x + 16\sin^5 x$ (b) $\sin^2 x \cos^2 x = \frac{1 - \cos 4x}{8}$

For each part, verify that the identity is correct by calculating the values of the left and right sides of the equation, substituting $x = \frac{\pi}{12}$.

- 13. Two trigonometric identities are given by:
 - (a) $\tan 3x = \frac{3\tan x \tan^3 x}{1 3\tan^2 x}$ (b) $\cos 4x = 8(\cos^4 x \cos^2 x) + 1$

For each part, verify that the identity is correct by calculating the values of the left and right sides of the equation, substituting $x = 24^{\circ}$.

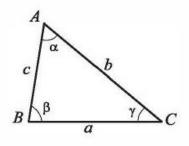
14. Define two variables: $alpha = \pi/6$, and $beta = 3\pi/8$. Using these variables, show that the following trigonometric identity is correct by calculating the values of the left and right sides of the equation.

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$

- 15. Given: $\int x \sin ax dx = \frac{\sin ax}{a^2} \frac{x \cos ax}{a}$. Use MATLAB to calculate the following definite integral: $\int_{\frac{\pi}{3}}^{\frac{3\pi}{2}} x \sin(0.6x) dx$.
- 16. In the triangle shown a = 5.3 in., $\gamma = 42^{\circ}$, and b = 6 in. Define a, γ , and b as variables, and then:
 - (a) Calculate the length b by using the Law of Cosines.

(Law of Cosines: $c^2 = a^2 + b^2 - 2ab\cos\gamma$)

- (b) Calculate the angles β and γ (in degrees) using the Law of Cosines.
- (c) Check that the sum of the angles is 180°.



Chapter 1: Starting with MATLAB

- 17. In the triangle shown a = 5 in., b = 7 in., and $\gamma = 25^{\circ}$. Define a, b, and γ as variables, and then:
 - (a) Calculate the length of c by substituting the variables in the Law of Cosines.

(Law of Cosines: $c^2 = a^2 + b^2 - 2ab\cos\gamma$)

- (b) Calculate the angles α and β (in degrees) using the Law of Sines.
- (c) Verify the Law of Tangents by substituting the results from part (b) into the right and left sides of the equation.

Law of Tangents:
$$\frac{a-b}{a+b} = \frac{\tan\left[\frac{1}{2}(\alpha-\beta)\right]}{\left[\frac{1}{2}(\alpha+\beta)\right]}$$

- 18. In the ice cream cone shown, L = 4 in. and $\theta = 35^{\circ}$. The cone is filled with ice cream such that the portion above the cone is a hemisphere. Determine the volume of the ice cream.
- 19. For the triangle shown, a = 48 mm, b = 34 mm, and $\gamma = 83^{\circ}$. Define a, b, and γ as variables, and then:
 - (a) Calculate c by substituting the variables in the Law of Cosines.

(Law of Cosines: $c^2 = a^2 + b^2 - 2ab\cos\gamma$)

(b) Calculate the radius r of the circle circumscribing the triangle using the formula:

$$r = \frac{abc}{4\sqrt{s(s-a)(s-b)(s-c)}}$$

where $s = (a+b+c)/2$.

20. The parametric equations of a line in space are:

 $x = x_0 + at$, $y = y_0 + bt$, and $z = z_0 + ct$. The distance *d* from a point $A(x_A, y_A, z_A)$ to the line can be calculated by:

$$d = d_{A0} \sin \left[\arccos \left(\frac{(x_A - x_0)a + (y_A - y_0)b + (z_A - z_0)c}{d_{A0}\sqrt{a^2 + b^2 + c^2}} \right) \right]$$

where $d_{A0} = \sqrt{(x_A - x_0)^2 + (y_A - y_0)^2 + (z_A - z_0)^2}$. Determine the distance of the point A (2, -3, 1)

from the line x = -4 + 0.6t, y = -2 + 0.5t, and z = -3 + 0.7t. First define the variables x_0 , y_0 , z_0 , a, b, and c, then use the variable (and the coordinates of point A) to calculate the variable d_{A0} , and finally calculate d.

