
Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 1

3-1 What is Resolution ?

 Resolution is a technique for theorem proving in propositional and

predicate calculus which attempts to show that the negation of the statement

produces a contradiction with the known statements.

Resolution refutation proofs involve the following steps:

1. Put the premises or axioms into clause form.

2. Add the negation of what is to be proved, in clause form, to the set

of axioms.

3. Resolve these clauses together, producing new clauses that logically

follow from them.

4. Produce a contradiction by generating the empty clause.

5. The substitutions used to produce the empty clause are those under

which the opposite of the negated goal is true.

CHAPTER 3

RESOLUTION

THEOREM PROVING

In this chapter we present a technique for
automating the process of finding solutions to

user's query using resolution.

By: Muhanad Tahrir Younis

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 2

Resolution refutation proofs require that the axioms and the negation of the

goal be placed in a normal form called clause form. Clause form represents

the logical database as a set of disjunctions of literals. A literal is an atomic

expression or the negation of an atomic expression.

The most common form of resolution, called binary resolution, is applied

to two clauses when one contains a literal and the other its negation. If these

literals contain variables, the literals must be unified to make them

equivalent. A new clause is then produced consisting of the disjuncts of all

the predicates in the two clauses minus the literal and its negative instance,

which are said to have been "resolved away." The resulting clause receives

the unification substitution under which the predicate and its negation are

found as "equivalent."

3-2 Producing the Clause Form for Resolution Refutations

The resolution proof procedure requires all statements in the

database describing a situation to be converted to a standard form called

clause form. This is motivated by the fact that resolution is an operator on

pairs of disjuncts to produce new disjuncts. The form the database takes is

referred to as a conjunction of disjuncts. It is a conjunction because all the

clauses that make up the database are assumed to be true at the same time.

It is a disjunction in that each of the individual clauses is expressed with

disjunction (or ν) as the connective.

We now present an algorithm, consisting of a sequence of

transformations, for reducing any set of predicate calculus statements

to clause form.

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 3

We demonstrate this process of conjunctive normal form reduction

through an example and give a brief description rationalizing each step.

In the following expression, uppercase letters indicate variables

(W, X, Y, and Z); lowercase letters in the middle of the alphabet indicate

constants or bound variables (l, m, and n); and early alphabetic

lowercase letters indicate the predicate names (a, b, c, d, and e). To

improve readability of the expressions, we use two types of brackets: (

) and []. Where possible in the derivation, we remove redundant

brackets: The expression we will reduce to clause form is:

1. First we eliminate the ⇒ by using: a ⇒ b ≡ ¬ a v b. This transformation

reduces the expression in (i) above:

2. Next we reduce the scope of negation. This may be accomplished using

a number of the transformations that includes:

Using the second and fourth equivalences (ii) becomes:

3. Next we standardize by renaming all variables so that variables bound

(i) (∀X)([a(X) Λ b(X)] ⇒ [c(X,l) Λ (ƎY)((ƎZ)[c(Y,Z)] ⇒ d(X,Y))]) ν (∀X)(e(X))

(ii) (∀X)(¬[a(X) Λ b(X)] ν [c(X,l) Λ (ƎY)(¬(ƎZ)[c(Y,Z)] ν d(X,Y))]) ν (∀X)(e(X))

(iii) (∀X)([¬ a(X) ν¬b(X)] ν [c(X,l) Λ (ƎY)((∀Z)[¬c(Y,Z)] ν d(X,Y))]) ν (∀X)(e(X))

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 4

by different quantifiers have unique names. Because variable names are

"dummies" or "place holders," the particular name chosen for a variable

does not affect either the truth value or the generality of the clause.

Transformations used at this step are of the form:

Because (iii) has two instances of the variable X, we rename:

4. Move all quantifiers to the left without changing their order. This is

possible because step 3 has removed the possibility of any conflict

between variable names. (iv) now becomes:

After step 4 the clause is said to be in prenex normal form, because all

the quantifiers are in front as a prefix and the expression or matrix

follows after.

5. At this point all existential quantifiers are eliminated by a process called

skolemization. Expression (v) has an existential quantifier for Y. When

an expression contains an existentially quantified variable, for example,

(ƎZ)(foo(.... Z,...)), it may be concluded that there is an assignment

to Z under which foo is true. Skolemization identifies such a value.

Skolemization does not necessarily show how to produce such a

value; it is only a method for giving a name to an assignment that must

exist. If k represents that assignment, then we have foo(.... k....). Thus:

(iv) (∀X)([¬ a(X) ν ¬b(X)] ν [c(X,l) Λ (ƎY)((∀Z)[¬c(Y,Z)] ν d(X,Y))]) ν (∀W)(e(W))

(v) (∀X)(ƎY)(∀Z)(∀W)([¬ a(X) ν¬b(X)] ν [c(X,l) Λ ([¬c(Y,Z)] ν d(X,Y))]) ν e(W))

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 5

where the name fido is picked from the domain of definition of X to

represent that individual X. fido is called a skolem constant. If the

predicate has more than one argument and the existentially quantified

variable is within the scope of universally quantified variables, the

existential variable must be a function of those other variables. This is

represented in the skolemization process:

This expression indicates that every person has a mother. Every person is

an X and the existing mother will be a function of the particular person X

that is picked. Thus skolemization gives:

which indicates that each X has a mother (the m of that X). In another

example:

is skolemized to:

We note that the existentially quantified Z was within the scope (to the

right of) universally quantified X and Y Thus the skolem assignment is a

function of X and Y but not of W. With skolemization (v) becomes:

where f is the skolem function of X that replaces the existential Y. Once

the skolemization has occurred, step 6 can take place, which simply drops

the prefix.

(vi) (∀X)(∀Z)(∀W)([¬ a(X) ν ¬b(X)] ν [c(X,l) Λ ([¬c(f(X),Z)] ν d(X,f(X)))]) ν e(W))

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 6

6. Drop all universal quantification. By this point only universally quantified

variables exist (step 5) with no variable conflicts (step 3). Thus all

quantifiers can be dropped, and any proof procedure employed assumes

all variables are universally quantified. Formula (vi) now becomes:

7. Next we convert the expression to the conjunct of disjuncts form. This

requires using the associative and distributive properties of Λ and ν.

Recall that

which indicates that Λ or v may be grouped in any desired fashion. The

distributive property is also used, when necessary. Because

is already in clause form, Λ is not distributed. However, v must be

distributed across Λ using:

 The final form of (vii) is:

8. Now call each conjunct a separate clause. In the example (viii) above

there are two clauses:

(vii) [¬ a(X) ν ¬b(X)] ν [c(X,l) Λ (¬c(f(X),Z) ν d(X,f(X)))] ν e(W)

(viii) [¬ a(X) ν ¬b(X) ν c(X,l) ν e(W)] Λ

 [¬ a(X) ν ¬b(X) ν ¬c(f(X),Z) ν d(X,f(X)) ν e(W)]

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 7

9. The final step is to standardize the variables apart again. This requires

giving the variable in each clause generated by step 8 different names.

This procedure arises from the following equivalence:

which follows from the nature of variable names as place holders. (ixa)

and (ixb) now become, using new variable names U and V:

3-3 The Binary Resolution Proof Procedure

The resolution refutation proof procedure answers a query or deduces a new

result by reducing the set of clauses to a contradiction, represented by the null

clause (□). The contradiction is produced by resolving pairs of clauses from

the database. If a resolution does not produce a contradiction directly,

then the clause produced by the resolution, the resolvent, is added to

the database of clauses and the process continues.

Ex(1): Consider now an example from the propositional calculus, where we

want to prove a from the following axioms:

b Λ c  a
b
d Λ e  c
e ν f

d Λ ¬ f

(ixa) [¬ a(X) ν ¬b(X) ν c(X,l) ν e(W)]

(ixb) [¬ a(X) ν ¬b(X) ν ¬c(f(X),Z) ν d(X,f(X)) ν e(W)]

(xa) [¬ a(X) ν ¬b(X) ν c(X,l) ν e(W)]

(xb) [¬ a(U) ν ¬b(U) ν ¬c(f(U),Z) ν d(U,f(U)) ν e(V)]

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 8

We reduce the first axiom to clause form:
b Λ c  a

¬ (b Λ c) ν a

¬ b ν ¬ c ν a

The remaining axioms are reduced, and we have the following clauses:

The resolution proof is found in Figure (3-1). First, the goal to be proved, a,

is negated and added to the clause set. The derivation of □ indicates that

the database of clauses is inconsistent.

Figure (3-1): Resolution prove for an example from the propositional calculus.

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 9

Ex(2): We now present an example of a resolution refutation for the

predicate calculus. We wish to prove that "Fido will die" from the statements

that "Fido is a dog. All dogs are animals. All animals will die."

Converts these predicates to clause form:

Negate the conclusion that Fido will die:

Resolve clauses having opposite literals, producing new clauses by resolution

as in Figure (3-2).

Figure (3-2): Resolution proof for the "dead dog" problem.

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 10

Ex(3): We now present another example of a resolution refutation for the

predicate calculus. Consider the following story of the "lucky student":

"Anyone passing his history exams and winning the lottery is happy. But

anyone who studies or is lucky can pass all his exams. John did not study

but he is lucky. Anyone who is lucky wins the lottery. Is John happy?"

a. First change the sentences to predicate form:

1- Anyone passing his history exams and winning the lottery is happy.

 ∀X (pass(X, history) Λ win(X, lottery) ⇒ happy(X))

2- Anyone who studies or is lucky can pass all his exams.

 ∀X∀Y (study(X) v lucky(X) ⇒ pass(X,Y))

3- John did not study but he is lucky.

 ¬ study(john) Λ lucky(john)

4- Anyone who is lucky wins the lottery.

 ∀X (lucky(X) ⇒ win(X, lottery))

b. These four predicate statements are now changed to clause form:

1- ¬ pass(X, history) ν ¬ win(X, lottery) ν happy(X)

2- ¬ study(Y) v pass(Y,Z)

3- ¬ lucky(W) v pass(W,V)

4- ¬ study(john)

5- lucky(john)

6- ¬ lucky(U) ν win(U, lottery)

Into these clauses is entered, in clause form, the negation of the conclusion:

7- ¬ happy(john)

The resolution refutation graph of Figure (3-3) shows a derivation of the

contradiction and, consequently, proves that John is happy.

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 11

Ex(4): As a final example, suppose:

"All people who are not poor and are smart are happy. Those people
who read are not stupid. John can read and is wealthy. Happy
people have exciting lives. Can anyone be found with an exciting
life?"

a) First change the sentences to predicate form:

We assume ∀X (smart (X) ≡ ¬ stupid (X)) and ∀Y (wealthy (Y) ≡ ¬ poor (Y)), and get:

∀X (¬ poor (X) Λ smart (X) ⇒ happy (X))

∀Y (read (Y) ⇒ smart (Y))

Figure(3-3): One resultion refutation for the "happy student" problem.

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 12

read (john) Λ ¬ poor (john)

∀Z (happy (Z) ⇒ exciting (Z))

The negation of the conclusion is:

¬ƎW (exciting (W))

b) These predicate calculus expressions for the happy life problem are

transformed into the following clauses:

poor (X) v ¬ smart (X) v happy (X)

¬ read (Y) v smart (Y)

read (john)

¬ poor (john)

¬ happy (Z) v exciting (Z)

¬ exciting (W)

The resolution refutation for this example is found in Figure (3-4).

 Figure(3-4): Resolution prove for the "exciting life" problem.

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 13

3.4 Answer Extraction from Resolution

Notice that inmost of our problems, the queries of the user are basically

answered with either a Yes or a No. For instance, in the Exciting Life

Problem, we are to find out if some person lives an exciting life or not. In

our Fido example, we try to find out if Fido will die or not.

Resolution is not only capable of answering Yes or No queries, it is also

able to yield specific answers to queries requesting for specific

information. Consider the simple example below.

3-5

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 14

3-5

3-5

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 15

3-5

3-6

3-6

Chapter Three: Resolution Theorem Proving Prepared By: Dr Muhanad Tahrir Younis

 16

Exercises

Q1: Write down the steps for converting an arbitrary predicate logic

sentence into clausal form, and apply them to the following sentence:

X ∀Y p(X, Y)  Z q(X, Z)  ¬r(Y, Z)

Q2: Convert the following predicate expression into clause form:

¬{(∀X) {p(X)⇒{(∀Y) [p(Y) ⇒p(f(X, Y))]⋀ ¬(∀Y) [q(X, Y)⇒p(Y)]}}}

Q3: Skolemize ∀X [ƎY animal (Y) ^ ¬ loves (X, Y)]ν [ƎZ loves(Z, X)].

Q4: consider the following: " Marcus is a man. Marcus is a pompeian. All

pompeian are Romans. Caesar is a ruler. All Romans are either loyal

to Caesar or hate him. Everyone is loyal to someone. People only try

to assassinate rulers they are not loyal to. Marcus tried to assassinate

Caesar." Prove using resolution that "Marcus hates Caesar".

Q5: Consider the following: "Ahmed likes all kinds of games. Football is

game. Basketball is game. Anything anyone plays and isn't killed by

is game. Ali plays tennis and still alive. Ban plays everything Ali plays."

Use resolution to answer the question, "What game does Ban play?".

