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3-1 What is Resolution ?         

 

       Resolution is a technique for theorem proving in propositional and 

predicate calculus which attempts to show that the negation of the statement 

produces a contradiction with the known statements. 

Resolution refutation proofs involve the following steps: 

1. Put the premises or axioms into clause form. 

2. Add the negation of what is to be proved, in clause form, to the set 

of axioms. 

3. Resolve these clauses together, producing new clauses that logically 

follow from them. 

4. Produce a contradiction by generating the empty clause. 

5. The substitutions used to produce the empty clause are those under 

which the opposite of the negated goal is true. 
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Resolution refutation proofs require that the axioms and the negation of the 

goal be placed in a normal form called clause form. Clause form represents 

the logical database as a set of disjunctions of literals. A literal is an atomic 

expression or the negation of an atomic expression. 

The most common form of resolution, called binary resolution, is applied 

to two clauses when one contains a literal and the other its negation. If these 

literals contain variables, the literals must be unified to make them 

equivalent. A new clause is then produced consisting of the disjuncts of all 

the predicates in the two clauses minus the literal and its negative instance, 

which are said to have been "resolved away." The resulting clause receives 

the unification substitution under which the predicate and its negation are 

found as "equivalent." 

3-2 Producing the Clause Form for Resolution Refutations 
 

The resolution proof procedure requires all statements in the 

database describing a situation to be converted to a standard form called 

clause form. This is motivated by the fact that resolution is an operator on 

pairs of disjuncts to produce new disjuncts. The form the database takes is 

referred to as a conjunction of disjuncts. It is a conjunction because all the 

clauses that make up the database are assumed to be true at the same time. 

It is a disjunction in that each of the individual clauses is expressed with 

disjunction (or ν) as the connective. 

We now present an algorithm, consisting of a sequence of 

transformations, for reducing any set of predicate calculus statements 

to clause form. 
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We demonstrate this process of conjunctive normal form reduction 

through an example and give a brief description rationalizing each step. 

In the following expression, uppercase letters indicate variables 

(W, X, Y, and Z); lowercase letters in the middle of the alphabet indicate 

constants or bound variables (l, m, and n); and early alphabetic 

lowercase letters indicate the predicate names (a, b, c, d, and e). To 

improve readability of the expressions, we use two types of brackets: ( 

) and [ ]. Where possible in the derivation, we remove redundant 

brackets: The expression we will reduce to clause form is: 

 

1. First we eliminate the ⇒ by using: a ⇒ b ≡ ¬ a v b. This transformation 

reduces the expression in (i) above: 

 
2. Next we reduce the scope of negation. This may be accomplished using 

a number of the transformations that includes: 

 

 

 

 

 

 

 

 

 

 

 

 

Using the second and fourth equivalences (ii) becomes: 
 

3. Next we standardize by renaming all variables so that variables bound 

(i) (∀X)([a(X) Λ b(X)] ⇒ [c(X,l) Λ (ƎY)((ƎZ)[c(Y,Z)] ⇒ d(X,Y))]) ν (∀X)(e(X)) 

(ii) (∀X)(¬[a(X) Λ b(X)] ν [c(X,l) Λ (ƎY)(¬(ƎZ)[c(Y,Z)] ν d(X,Y))]) ν (∀X)(e(X)) 

(iii) (∀X)([¬ a(X) ν¬b(X)] ν [c(X,l) Λ (ƎY)((∀Z)[¬c(Y,Z)] ν d(X,Y))]) ν (∀X)(e(X)) 
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by different quantifiers have unique names. Because variable names are 

"dummies" or "place holders," the particular name chosen for a variable 

does not affect either the truth value or the generality of the clause. 

Transformations used at this step are of the form: 

 

 

 

 

 

Because (iii) has two instances of the variable X, we rename: 

 
4. Move all quantifiers to the left without changing their order. This is 

possible because step 3 has removed the possibility of any conflict 

between variable names. (iv) now becomes:  

 

After step 4 the clause is said to be in prenex normal form, because all 

the quantifiers are in front as a prefix and the expression or matrix 

follows after. 

5. At this point all existential quantifiers are eliminated by a process called 

skolemization. Expression (v) has an existential quantifier for Y. When 

an expression contains an existentially quantified variable, for example, 

(ƎZ)(foo(.... Z,...)), it may be concluded that there is an assignment 

to Z under which foo is true. Skolemization identifies such a value. 

Skolemization does not necessarily show how to produce such a 

value; it is only a method for giving a name to an assignment that must 

exist. If k represents that assignment, then we have foo(.... k.... ). Thus: 

 
  

 

(iv) (∀X)([¬ a(X) ν ¬b(X)] ν [c(X,l) Λ (ƎY)((∀Z)[¬c(Y,Z)] ν d(X,Y))]) ν (∀W)(e(W)) 

(v) (∀X)(ƎY)(∀Z)(∀W)([¬ a(X) ν¬b(X)] ν [c(X,l) Λ ( [¬c(Y,Z)] ν d(X,Y))]) ν e(W)) 
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where the name fido is picked from the domain of definition of X to 

represent that individual X. fido is called a skolem constant. If the 

predicate has more than one argument and the existentially quantified 

variable is within the scope of universally quantified variables, the 

existential variable must be a function of those other variables. This is 

represented in the skolemization process: 

 
  
 

This expression indicates that every person has a mother. Every person is 

an X and the existing mother will be a function of the particular person X 

that is picked. Thus skolemization gives: 

 
 
 

which indicates that each X has a mother (the m of that X). In another 

example: 

  
 

is skolemized to: 

  
 

We note that the existentially quantified Z was within the scope (to the 

right of) universally quantified X and Y Thus the skolem assignment is a 

function of X and Y but not of W. With skolemization (v) becomes: 

 

  

where f is the skolem function of X that replaces the existential Y. Once 

the skolemization has occurred, step 6 can take place, which simply drops 

the prefix. 

(vi) (∀X)(∀Z)(∀W)([¬ a(X) ν ¬b(X)] ν [c(X,l) Λ ( [¬c(f(X),Z)] ν d(X,f(X)))]) ν e(W)) 
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6. Drop all universal quantification. By this point only universally quantified 

variables exist (step 5) with no variable conflicts (step 3). Thus all 

quantifiers can be dropped, and any proof procedure employed assumes 

all variables are universally quantified. Formula (vi) now becomes: 

 

 
 
 

7. Next we convert the expression to the conjunct of disjuncts form. This 

requires using the associative and distributive properties of Λ and ν. 

Recall that 

 
  
 
 

which indicates that Λ or v may be grouped in any desired fashion. The 

distributive property is also used, when necessary. Because 

  
 

is already in clause form, Λ is not distributed. However, v must be 

distributed across Λ using: 

  
 
 
 The final form of (vii) is: 
 
 
 
 
 

8. Now call each conjunct a separate clause. In the example (viii) above 

there are two clauses: 

(vii) [¬ a(X) ν ¬b(X)] ν [c(X,l) Λ (¬c(f(X),Z) ν d(X,f(X)))] ν e(W) 

(viii) [¬ a(X) ν ¬b(X) ν c(X,l) ν e(W)] Λ 

         [¬ a(X) ν ¬b(X) ν ¬c(f(X),Z) ν d(X,f(X)) ν e(W)] 
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9. The final step is to standardize the variables apart again. This requires 

giving the variable in each clause generated by step 8 different names. 

This procedure arises from the following equivalence: 

 
  
 

which follows from the nature of variable names as place holders. (ixa) 

and (ixb) now become, using new variable names U and V: 

 

3-3 The Binary Resolution Proof Procedure     
 
The resolution refutation proof procedure answers a query or deduces a new 

result by reducing the set of clauses to a contradiction, represented by the null 

clause (□). The contradiction is produced by resolving pairs of clauses from 

the database. If a resolution does not produce a contradiction directly, 

then the clause produced by the resolution, the resolvent, is added to 

the database of clauses and the process continues. 

Ex(1): Consider now an example from the propositional calculus, where we 

want to prove a from the following axioms: 

b Λ c  a 
b 
d Λ e  c 
e ν f 

d Λ ¬ f 

(ixa) [¬ a(X) ν ¬b(X) ν c(X,l) ν e(W)]  

(ixb) [¬ a(X) ν ¬b(X) ν ¬c(f(X),Z) ν d(X,f(X)) ν e(W)] 

(xa) [¬ a(X) ν ¬b(X) ν c(X,l) ν e(W)]  

(xb) [¬ a(U) ν ¬b(U) ν ¬c(f(U),Z) ν d(U,f(U)) ν e(V)] 
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We reduce the first axiom to clause form: 
b Λ c  a 

¬ (b Λ c) ν a 

¬ b ν ¬ c ν a 
 

The remaining axioms are reduced, and we have the following clauses: 
 

 

 

 

 

 

 

 

 

 

 

 

 

The resolution proof is found in Figure (3-1). First, the goal to be proved, a, 

is negated and added to the clause set. The derivation of □ indicates that 

the database of clauses is inconsistent. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (3-1): Resolution prove for an example from the propositional calculus. 
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Ex(2): We now present an example of a resolution refutation for the 

predicate calculus. We wish to prove that "Fido will die" from the statements 

that "Fido is a dog. All dogs are animals. All animals will die." 

 
 
 

 
 

 
Converts these predicates to clause form: 

 
 
 
 
 
 
 

Negate the conclusion that Fido will die: 

 

 
 
 
Resolve clauses having opposite literals, producing new clauses by resolution 

as in Figure (3-2). 

 
 

 
 
 
 
 
 
 
 
 
 

 

Figure (3-2): Resolution proof for the "dead dog" problem. 
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Ex(3): We now present another example of a resolution refutation for the 

predicate calculus. Consider the following story of the "lucky student": 

 
"Anyone passing his history exams and winning the lottery is happy. But 

anyone who studies or is lucky can pass all his exams. John did not study 

but he is lucky. Anyone who is lucky wins the lottery. Is John happy?" 

 

a. First change the sentences to predicate form: 

1- Anyone passing his history exams and winning the lottery is happy.  

   ∀X (pass(X, history) Λ win(X, lottery) ⇒ happy(X))  

2- Anyone who studies or is lucky can pass all his exams.  

   ∀X∀Y (study(X) v lucky(X) ⇒ pass(X,Y))  

3- John did not study but he is lucky. 

   ¬ study(john) Λ lucky(john) 

4- Anyone who is lucky wins the lottery.  

   ∀X (lucky(X) ⇒ win(X, lottery)) 

b. These four predicate statements are now changed to clause form: 

1- ¬ pass(X, history) ν ¬ win(X, lottery) ν happy(X) 

2- ¬ study(Y) v pass(Y,Z) 

3- ¬ lucky(W) v pass(W,V) 

4- ¬ study(john)  

5- lucky(john) 

6- ¬ lucky(U) ν win(U, lottery) 
 

Into these clauses is entered, in clause form, the negation of the conclusion: 

7- ¬ happy(john) 

 
The resolution refutation graph of Figure (3-3) shows a derivation of the 

contradiction and, consequently, proves that John is happy. 
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Ex(4): As a final example, suppose: 
 
"All people who are not poor and are smart are happy. Those people 
who read are not stupid. John can read and is wealthy. Happy 
people have exciting lives. Can anyone be found with an exciting 
life?" 
 
a) First change the sentences to predicate form: 

We assume ∀X (smart (X) ≡ ¬ stupid (X)) and ∀Y (wealthy (Y) ≡ ¬ poor (Y)), and get: 

 

∀X (¬ poor (X) Λ smart (X) ⇒ happy (X))  

∀Y (read (Y) ⇒ smart (Y)) 

Figure(3-3): One resultion refutation for the "happy student" problem. 
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read (john) Λ ¬ poor (john) 

∀Z (happy (Z) ⇒ exciting (Z)) 

The negation of the conclusion is: 

¬ƎW (exciting (W)) 

b) These predicate calculus expressions for the happy life problem are 

transformed into the following clauses: 

poor (X) v ¬ smart (X) v happy (X)  

¬ read (Y) v smart (Y) 

read (john) 

¬ poor (john) 

¬ happy (Z) v exciting (Z) 

¬ exciting (W) 

The resolution refutation for this example is found in Figure (3-4). 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure(3-4): Resolution prove for the "exciting life" problem. 
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3.4 Answer Extraction from Resolution      
 

Notice that inmost of our problems, the queries of the user are basically 

answered with either a Yes or a No. For instance, in the Exciting Life 

Problem, we are to find out if some person lives an exciting life or not. In 

our Fido example, we try to find out if Fido will die or not. 

Resolution is not only capable of answering Yes or No queries, it is also 

able to yield specific answers to queries requesting for specific 

information. Consider the simple example below. 

 

 
 

3-5 
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3-5 

3-5 
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3-5 

3-6 

3-6 
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Exercises           
 

Q1: Write down the steps for converting an arbitrary predicate logic  

sentence into clausal form, and apply them to the following sentence: 

X ∀Y  p(X, Y)  Z  q(X, Z)  ¬r(Y, Z) 

Q2: Convert the following predicate expression into clause form: 

¬{(∀X) {p(X)⇒{(∀Y) [p(Y) ⇒p(f(X, Y))]⋀ ¬(∀Y) [q(X, Y)⇒p(Y)]}}} 

 

Q3: Skolemize  ∀X [ƎY animal (Y) ^ ¬ loves (X, Y)]ν [ƎZ loves(Z, X)]. 

Q4: consider the following: " Marcus is a man. Marcus is a pompeian. All 

pompeian are Romans. Caesar is a ruler. All Romans are either loyal 

to Caesar or hate him. Everyone is loyal to someone. People only try 

to assassinate rulers they are not loyal to. Marcus tried to assassinate 

Caesar." Prove using resolution that "Marcus hates Caesar". 

 

Q5: Consider the following: "Ahmed likes all kinds of games. Football is 

game. Basketball is game. Anything anyone plays and isn't killed by 

is game. Ali plays tennis and still alive. Ban plays everything Ali plays." 

Use resolution to answer the question, "What game does Ban play?". 


