Chapter Four
Growth of Cloud Droplets by Diffusion

Flux
A flux is the amount of something passing through a unit of area in a unit of time.

The unitsof flux are the units of whatever is being transported, divided by area and
time. Examples are:

Mass flux: kg m2s?

Energy flux: Jm?s?
Particle flux: m?2st?

The flux is actually a vector that points in the direction of the transport.

In component form in Cartesian coordinates the flux vector is.

F=Fi+F,j+Fk (4.1)

Growth Rate of Droplet by Diffusion

Once a cloud droplet forms it continues to grow by diffusion of water vapor onto its
surface (condensation).

- Figure 1 illustrates a droplet of radius R with radia vapor fluxesat the surface of the
droplet denoted by Fy
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Figure 1. Convergence of radial vapor 1‘ques.lfR at the surface of the droplet results in
droplet growth.
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For simplicity we will assume that the fluxes are axisymmetric, meaning that the fluxes
only change with distance from the droplet, not with the angle. Another way of saying
this is that the fluxes are isotropic.

If we multiply the flux at the surface of the droplet by the surface area of the droplet
we obtain the rate of change of molecules of the droplet,

(4.2)

- Notethat Fg itself is negative, since it is pointing inward toward the droplet. That is
why there is a negative in front of (4.2), so that dn/dt will be positive.

Theflux Fgat the surface of the droplet is given by Fick’s first law of diffusion F = -DRNN
where D isthe diffusivity, andis F; = -k <D (NN ), = =D (N /1r) . Therefore (4.2)
becomes:

dn _ 4pDR2*M2

dt 8 Ir o

- Keep in mind that n isthe number of water moleculesin the droplet itself, whereas N
is the number density of water vapor molecules in the air.

(4.3)

We find (ON/0r)g as follows:
- We assume that N does not change with time, so that from Fick’s second law of

diffusion 111—':' - DRIN we have:

N°N =0 (4.4)

In spherica coordinates with the droplet at the origin, and since the vapor
concentration is axisymmetric, (4.4) becomes

iaer ng = (4.5)
e 1rs
- Integrating (4.5) twice with respect to r results in
N(r):—&+c2 (4.6)
r

where c; and ¢, are the constants of integration. We find them by applying the
boundary conditions

N(r>R)=N,

N(R)=N. (4.7)
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where Ny is the background vapor concentration well away from the droplet.
- Applying the boundary conditions (4.7) to (4.6) results in
C = (N b~ N R)R
c, =N,

- Putting these constants back into (4.6) results in
_ (N b~ N R)R
r

N (r) = +N, (4.8)

- And finaly, by taking d/0r of (4.8) and evaluating the result a r = R, we get
gIN 6 _ Ny -Ng

2 = (4.9)
§r sz R
Putting (4.9) into (4.3) gives us our growth-rate equation for the droplet,
3—?:4PDR(Nb -Ng) (4.10)

- If the background vapor concentration is larger than that at the droplet surface, N, >
Ng, the droplet will grow due to condensation.

- If the background vapor concentration is smaller than that at the droplet surface, Ny
< Ng, the droplet will shrink due to evaporation.

Growth Rate in Terms of Droplet M ass and Radius

Equation (4.10) can be converted to an equation for the mass growth rate, dnm/dt, as
follows:

- Multiply both sides of (4.10) by the molar mass of water, M,,, and divide by Avogadro’s

number, Na,
M. dn M
W =Y ADR(N, - N 411
N, dt NAp(bR) (4.11)
- Sincemassis
MW
n=m
N

and absolute humidity is
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(4.11) becomes

&0 - 4pDR(r,, - o) (412)

What would be most convenient is to have an equation for the growth-rate in terms of the
radius of the droplet. We can construct this using the chain rule for derivatives,

dR _dR dm (4.13)
dt  dm dt '
The mass of adroplet is
m=—_pr R
SO
dR _ 1 (4.14)
dm 4pr,R? '
From (4.12), (4.13) and (4.14) we get
dR D
r = T(rvb -IR) (4.15)
|

Other Equations Needed to Solvefor Growth Rate

Equation (4.15) gives us the ability to integrate forward in time to find an expression
for R(t), the radius of the droplet at any future time t.

We do not know what value of p,rto use, since this depends on the temperature of
the surface of the droplet.

However, we can assume that at the surface of the droplet the air is saturated, so that
Pvr = Pvs, Where pys is the saturation absolute humidity.
Fom the ideal gas law for water vapor

=5 (4.16)

r\/R Vs RVT o

where Tris the temperature at the surface of the droplet.

* Note that Tris not necessarily the same as the air temperature. The droplet
warms or cools depending on whether there is condensation or evaporation
at the droplet’s surface.

es is the saturation vapor pressure over a curved, impure droplet which we know to be
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so that

1+———L€Xpe—g———+l] (4.18)

Equations (4.15) and (4.18) are two equations, but we have three unknown quantities: R,
pvr, and Tr. therefore we still need one more equation in order to have a closed set that we

can solve.

The third equation comes from balancing the gain of latent heat due to condensation
with the loss of sensible heat due to thermal diffusivity.

- The gan of latent heat due to condensation is given by

dm
‘]Iatent = Lv E = 4pR|—v D (rvb - rvR) (4-19)

- The sensible lost to the air by diffusion is
Jenstie = ~4PRK (T -T)) (4.20)

where K is the thermal diffusivity of air and T, is the temperature of the air.

- Baancing the sensible and latent heats by setting (4.19) equal to (4.20) results in

r,-rg=——0g-T,) (4.21)

Calculations of Growth Rates

Equations (4.15), (4.18) and (4.21) are three equationsfor three unknown quantities, R,
Pvr, and Tr. The equations are rewritten here,

dR D
—=—(r, -r.
dt rI(vb VR)

5 6L & 6u
rvR= eo $1+E_%gexp"l_" i_i
RT.& R R%;

K
L :LV—D(TR -T,)
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We can solve these three equationsto find the growth rateand radius of a droplet at any
future time, t.

However, the equations are quite complex and cannot be solved analytically. They need
to be solved numerically.

A somewhat simplified, though not as accurate, set of growth equationsis

a. b
S-1-—+—
rIR R_R (4.22)
dt F+F,
& 0
Fo=¢ L _0Lr (4.23)
e Rva [/} KTb
F, = TR, (4.24)
Des¥
where the saturation vapor pressure used in calculating Fqis that for a flat surface of

pure water

These equations still need to be integrated numericaly. The result for adroplet starting
a radius ro = 0.75 um is shown in Figure 2.

Note that after 20 hours the droplet is still only has a radius dlightly larger 60 um.

Figure 3 shows the effect of doubling the mass of solute. Although the droplet initially
grows faster with more solute, the growth rates quickly become the same.

Final Comments on Diffusional Growth

In order to be large enough to fall fast enough to reach the ground without evaporating,
a droplet has to reach a size of at least 0.1 mm in diameter (0.05 mm or 50 um in
radius).

A typica raindrop has a diameter of 2 mm (radius of 1 mm, or 1000 pm).
Clouds can form and rain start to fall in a matter of 30 minutes or so.

Diffusional growth explains how very tiny, brand-new cloud droplets grow to typical
cloud droplet sizes, but istoo slow to explain how precipitation forms.
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100 femtograms NaCl at 273K and S = 1.0005
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Figure 4: Growth of droplet initially of radius0.75 um for a solute of 100 femtograms of NaCl.

T=273Kand S = 1.0005
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Figure 5: Growth of droplet initialy of radius 0.75 um for two different solute masses.
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