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he following fundamental resuly

' - is based on {
The entire dev clop:\C?: ;al"“’ particular solution ﬂ:f If{'ﬂ =f I"" I, and
T.&mm?t :’-r SMPP;-“'M: n;-a linearly independent solutions of L(y)=0 op
;f;:'{:]::'rfr:?xuﬁ:r}nn:y{r of L(¥)= fon I has the form
| y=c¢ +":¢z+l}"p
which can be determined uniquely.

Since every solution of (3.23) has the form (3.26). we refer to (3.26). as
the general solution of (3.23). According tﬂ.Thw"’m I “’Iﬁ“.d any solutiop
of (3_33), we need only find two lincarly independent sotulions ¢, fﬁ_z of
L(¥)=0 and some particular solution ¥, of L(y)=/, and then use the given
initial conditions to determine ¢, and ¢,
Proof of Theorem 1. Since ¥, is a solution of (3.23} on /, we have L!l,bp} =¥
for all 1 on /. Since ¥ is also to be a solution of (3.23) on [, we have, using the

(3.26)

where c,. ¢, are constanis

linearity of L,
Ly -y,)=LW)-LW,)=f-/=0.
This shows that i —y,, is a solution of the homogeneous equation L(y)=0

on /. (Recall that this much of the proof was already established in Section
3.2 property ii). Therefore, by Theorem 5, Section 3.3, there exist unique

constants ¢,, ¢, such that
U—=y,=c ¢, +20; forallton [

which completes the proof. |

The nth-order linear nonhomogeneous equation (3.24) can be treated
in the same way, and Theorem | has the following analog.

Theorem 2. Suppose ), is some particular solution of L,(v)=f on I, and
suppose that ¢y, ¢,. ..., ¢, aren linearly independent solutions of L, (y)=0on .

Then every solution  of L,(y)=f on I has the form
Ip:fl'd’l +r2¢2 s +fu¢n+¢p

where c,, c,, ..., c, are constants which can be determined uniguely.

Exercises

1. Prove Theorem 2.

2. Compare Theorem 2 in the case n=1| with (he results of Section 1.4, in
particular with Theorem 1, Section | 4.

We shall now study some methods for finding a particular solution of the
equation L(y)=/for L,(y)=/.
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The Method of Variation of Constants

This general method for finding a particular solution is applicable whenever

onc knows the general solution of the associated homogencous equation
L(»)=0 or of LH{J’)=Q on /. We begin with the second-order case.

LeL gy, be two lincarly independent solutions of L(y)=0 on /. (These
may cither be given (o us or in some instances we can find them by one of

the methods already studied.) The method consists of finding functions u,. u,
such that the function

Vo=t +uyd, (3.27)

will be forced to satisfy the equation L(y)=f for all 1 on I. It is remark-
able that such a simple device works, because when u, and u, are constants
the function (3.27) satisfies L(y)=0 and thus cannot be a solution of L(y)=/
for f#0. It 1s of course not obvious that such functions u,, u, can be found.
We first argue in reverse; suppose we have found functions u,. u, such that
(3.27) satisfies L(y)=/on /. Then we have, for all 7 on /,

(1) +uaghs) =1, ) +uypy + i, +ureh,,
(100, +1028:) =y 8+ 103 + 20,8, + 2063 + i b, + 130
and using L(¢,)=L(¢,)=0 we obtain

L(uygy +uydy)=u L) +uy L)+ ao(d e +¢au)
+2a0 (@4} + Pyus) +a, (P 1) + Piu0a)
=ag[(f 1] + daus) + 2(P) 1) + Pou)]

+ay(p,uy +dus)=f
for all r on I. We would now like to obtain two relations from which to
determine the two functions u,. u,. We note that if ¢,u| +¢,u5=0 for all
on [ then also (¢,u)+¢,us) =0 for all t on I. But (¢,u) + 1) = u}
+ hous + 1y + Pius. Therefore, if we assume

) + Pyt =0 (3-28)

for all 1 on /, then the requirement

ag [(@ 1] + @au3)+ 2y + Poun)] +a, (1) +oua) =/

implies, on using (3.28) and the equation obtained by differentiating (3.28).
that we must also have, since (3.28) implies that ¢ uy+d,u; +dju;
+ ¢psu; =0, ]

¢uy + ¢, =£ (3.29)

do
for all r on /. Thus the assumption of the existence of a solution of the
form (3.27) of the equation L(y)=/ has led us to the two equations (3.28),

(3.29) from which we hope to determine u), u, and then the functions
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i find two funetions
=1y Fitathy will

. that if weed
iy But now reversing the argument We 3¢

3.29), then indeed ¥,

satisfy L(v)=fon [ : : )= f. we may thereflore

To ﬁll:ld.};l particular solution of the equitlio™ Ild'l:r‘:t;j'!rl':‘l'E':hmig equations
concentrate on equations (3.28). (3.29) s aIm‘rl;:~c:n:::f\’{u:i+;:nls is Wipy. &,).
for the quantities u} . w; and the determinant of thel is linearly independent
Since the solutions ¢, : ¢, of L(y)=0are by hypothesis ine

. : 1 (Theorem 2. Section 31.3)
on /. it follows that W (¢é,. ) (1)#0 for all r-.::lntht{tl'ffﬂl'ﬂ e ulways solved

and the system ((3.28). (3.29)) of E‘-?I“ﬂi“f“ £ 3 =
{in fact uniquely) for the qum““icﬁ iy "::n By E;:;m;r s rule mPPEHdII ).
the solution of the algebraic equations (3.28). (3.29)1

L =i u',=~—-:'r¢—-—-—' ~ronl.
"ﬂnw—{‘i’h{bz]‘ 2 ”u“’[d}:-‘?‘:]

i
Thus a possible choice for u. 1y 15

" 9 sl NG
th}:_J. AGLH ds n:{f}—‘[ﬂﬂ[s] w{rp,.:p:]{s]d

dols) W (. d2)(5)

i
o L

for any 1y, ¢ in /. where we have taken the constant of integration to be
zero. Substituting in (3.27), we find that

. :_i'- (s) [¢2 (1) &5} - ¢, (1) ¢ (s1] ofi 3.30
me_.l. ap(s) Wiy, ) (5) ‘ =9

Io
is a solution of L{y)=f on I, as may be verified by direct substitution. We
have thus sketched the derivation ol the following important result,

Theorem 3. Let &, ¢y be any nwa linearly independent solutions of the equa-
lion

L{y)=ao(t) )" +a, (1) ¥’ +a, (1) y=0,

where ag. a,. a, are continuous functions on some interval L and ag(1)#0on 1.
Then a particular solwtion  of L(y)= /. where fis continnous on 1, is given by
Eqg. (3.30),

Equation (3.30) 15 usuvally called the variation-of-constams formmla,
The reason for this name 1s clear from the method. Although the condition
expressed by Eq. (3.28) is artificial, the fact that we can solve the problem
using it justifies i, and this is actually the essence of the method. This
method of finding a particular solution of L{y)= fcan be used whenever the
coeflicients dg, ay. @y in L and the function fare continuous on f and iy #
on 7, and whenever one knows the general solution of the associnted homo-
gencous cquation. Itis not restricted to equations with constant cocflicients.

e T
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Excreise

3. Prove Theorem 3 by di

g irect sy
L{¥)=[on I [ Hing: Write ¥y in the form the Tunction ¥, wiven by (3,30} into

dr,{rlza:-,{r]I T é,(s) '

e pre— f B — :
a9(3) W($,. 63 ) "’""[ e s

In
L]
before beginning the ﬁiﬂ'crcnliuliun.]

Example 1. Find the genera) solution of the equation ¥
¥ +y=tany, ~<i<s
FeisE

Since, by Section 3.4, b, (1) =cos 1, &

- 3 alth=sin 1 are lincarly i .
¥"+y=0on any interval, they are i arly indcpendent solutions of

nearly independent on —%/2 <1< n/2: in fact

Wig, o) (1)=|""" ‘“"I\E..

—&in | cos

Instead of memorizing Theorem 3. it is simpler to remember the key sieps of the
method. By what we have just seen. y,=u, cosr+u, sins will be u solution of

Yit+y=tanton —n/2<t<=z/2 if and only if the functions u, and u, arc such that
uy. ity salisly Eqs. (3.28), (3.29), that is, if and only if

uy cosf+uysint=0 "
.o ——<I<=
— Uy sinf+u; cost=lant 2 £
Thus
; : sinfr 1 —cos*t
ty )= —tanit sint = - =— =Cosl—secl
cos ! cos!
: X x
Wy(f)=cosrlanr=sint,  —s<t<3,

and we may take

My [zjsj (cosr—sect) di, u:{r]:l sint dr
o v

or b

R
wy (1) =sint —log lsect+tantl,  wgl)=—cost,  —F=i=s.

; l

Therefore, by Theorem 1, every solution of "+
plt)=c, cosi+e; sint —cost log Jsect +tant]

i " i i“'ld- (ST
for some unique choice of the constants ¢
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1 i: ) . pLanE.
Exercises ¢ ihe following differential cquit i
R

4, Find the general solution of cacl
al p A r=secs, - P T T
b) " dy + Ay - cos N _ erval
: - : j% any continuous function on s0ME n
y d) _I'"‘-'-ll-_-|-‘+4_'l':l= i eyt aand o “}: fisa 3ﬂ1ll|'il:'lr| af the
A oS, given LRl st W
&) vo+{1/4r2) o= fi), (1= 0} fcontind
homogeneous cquation, i
. 1 i e p e 0
. Given that & is a solution of the ":"'-tl.il-"“':"“ ! +ﬂ " o, show that ¢4
siant different from zero and fis CONMINIGLS for 0= .

be chosen o that
1
2 3i L sinkir= s
dr]=¢, mﬂ;u%‘ sm.ﬂ-r+; j sin kit =5} (5]
2

where & is a real con-
;|.n1_‘| 3 Gl

[ i ; 11 =et af solutions of the
for 0<t<m, (Use cos &r and sin ik as 3 fundamen i
s i formula in the cise k=10

homopeneous equation.) Find an anilogous

6. Given the equalion
¥+ Sy -y S,

use the variation-af-constants formula and Theorem [ 10 prove that:
hal is, there exists a constnt Af =0 such that [f{r)

a) If fis bounded on 0=<r< o (1 :
'l £ Sy +dp=flr) is hounded on

< M on 0<¢<oo), then every selution ©

D<o,
b} If alsa f{1)=0 as r—oo, then cvery sojution ¢ of ¥"+ 50" +4r

a[#)— 0 as -0,
* 7. Can vou formulate Exercise 6 [or the general equation

il :ﬂ: conslant

= fl1) satishes

¥y +agy=fth

with a,. @, suitably restricled?

The method of variation of constants and Theorem 2 are applicable
to the ath-order equation L, (v)=fwith coefficients ap, a,,... a,, feonlinuous
and a,(f)#0 on some interval [ provided ane knows n linearly independent
sofutions @y, d,, ..., ¢, of the homogeneous equation L (r)=0 on I. Using
the second-order case for motivation, we try to find »# functions uy, u,, ..., 1,

net all constant, so thal
W=t iy +iiyd, + e,

will be a solution of L(y)=f on I If (see the second-order case)
H;':ﬁ] +H_I!'|;‘I-'I+...+p;¢l=ﬂ on -r. t]'I.EI'I ri!rll’=”|¢1+h'+-”q¢:‘ on ‘[ and if'
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manner we lind thay §f Iy, o
¥ t. iw

algebraic equations gp | Mo are chosen 1o salinfy

the system of lincar
u?¢[+ff1¢|-] -!r.,._l,_ulﬂli; l:[.
Wiy +udyd Frchild.  on
b} I'_=’+Hr:'f":"_1:'+-.-.|.ua#:—u=n. et
1y ehlp = 1

+H’i¢'l1"_1:l+‘_.+ulq¢lq.—1|= j

iy
then the function

Wa=udh, FHyhat o g,
will satisly L {¥)=fon /.

, MNole that the dcttrmipunt of cocfficients of the system of equations (3.31)
is Wid;.¢s...., ). which is different from zero for cvery | in [ since
thye tfz.-o0 oy are lincarly independem solutions of Lvi=0on [

Exercise

* B Verily that the function ¢ =ud,+u,d; +uyd, is a solution of Ly{y¥)=/on L
[Hinr: Solve (3.31) by Cramer’s rule and integrate 10 find u,, us. uy.]

Thus the entire problem is reduced to solving the algebraic system
(3.31). Since iis determinant of coefficients is Wi{p,. ¢,...., §,). and wince
the solutions ¢..... ¢, of L(¥)=0 on [ are lincarly independent on /.
Wit y...., $()#0 for + on [ and (3.31) always has a unique solution for
the quantities u}..... w, on 1. In fact, letting W (1) be the a by # d:terminapl
having the same elements as W{d,,.... ¢,) (f) except with (0.0,..., 1} as us
jth column, we see that Cramer's rule (Appendix 1) gives

AU A
e van R

The u; are obtained by integration. 50 that

3 Wi Sl
ﬂfp[f}=2 ¢;{r}j Wi ¢,.-J--. PRYETRE ds, | 1?..3.1]
J=1

o S

nd ¢ are any two points of /. . .
Whii:: E‘:?a::-e therefore ::,kﬂch:d the derivation of the [ollowing result, which

generalizes Theorem 3. |

Theorem 4. Let . 2 ¢, be n linearly independent solutions of the equat-
COFE . 1% wrasn e

rion

— o ——




CHAPTER 4

Linear Systems of
Differential Equations

stems of linear differential

In this chapter we will study the theory Of's)’ : ] s
equations, together with an outline of the basic theory of nonlinear systen

at the end of the chapter. As we shall see presently, malhe"‘m[_'czls':;oﬂilds
of physical systems somewhat more compllcat-ed lhan- lhosclmt .ca]g i
in Chapters 1, 2, 3 (motion of several interacting parucles.1e ectri ik
works, population problems involving more than one Specics, etc.) o
lead to systems of more than one differential equation. Such systems can
be reduced in most instances to linear systems of ﬁ.rsi-ordcr differential
equations with the aid of certain simplifying assumptions. To study these
linear systems, we shall make usc of linear algebra (_veclqr spaces and
matrix algebra). As a very special case of every result obtained in ‘lhlS chaq:er
we will obtain a corresponding result for a scalar linear differential equation
of second (or higher) order, such as those studied in Chapter 3. Thus students
Samiliar with linear algebra can study this development directly and omit

Chapter 3.

4.1 INTRODUCTION

We shall consider sysrems of first-order linear differential equations of the
form

Yi=ay () yi+ay,(f) y, + et ag,(t) v+, (1)
Ya=ay (1) y; +a,,(t) y, t ot a,,(t) y,+9, (1) (4.1)

Yan=0n (1) Y1+ a3 (1) y5+ - +au (1) yotga (1),

where the given functions a;(r), where i, j=1,...n and g:(1). where
i=1,..., n, are continuous on some fixed interva] & Unless men;io;ied spe-

114




4.1

cifically otherwise the

where p(r) and q(r) are given function 82
Sy;;tem (4.1) is linear in ; s.
equation y'=2y? j V2., ¥, and Y1 Vi

of " : s++s Yo The scalar
much more complicated equati A nonlinear differentia]

_ equation. These
N not be considered in this chapter:
Chapter 1. niinear equations have been studied in

Example 1. Consider the system

Yi=w —Iy; 4+ ¢
1=ty Ly, (43)
=yt v -y 4267,
where £ is the'real line, (1] e <100 - Here, n=3, and in the notation of (6.1)

nl)=¢
axn(f)=-1 g,()=0
ayy ()= -1 gi(t)=2¢"".

| 0
A(l)={r’ 0 —1}. (44)
L 1 =i

A(r) is a matrix whose entries are functions. The properties of matrix addition,

multiplication by scalars, and matrix multiplication with constant entries also hold

for matrices whose entries are functions defined on a common interval #. Let y and y'
be the column vectors

Wi r Vi
y=1r2|, ¥= }":‘-
Yal... LY

¢
g()=] 0 |. (4.5)
2e”".
Then, observing that matrix vector multiplication of A(f) and y gives
=ty
A(r)y{ Yy =3
nt¥e—
we see that system (4.3) may be represented conveniently in the matrix vector form
y=A(1) y+g(0),
where A(f) and g(r) are given respectively by (4.4) and (4.5)-

ay, (=1 ag ()=~ ay(f)=0
a ()=r? az(1)=0
ay (=1 ay,()=1

Consider now the array

and let g(r) be the vector
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, the 7 x n matrix
Returning (o the general case of system (4.1), we definc

() apa(t) - aya(t)
A({)= :21(” a!?(r) " ﬂ:,:!(f) ] (46)
ay (1) () - aum(0)

. ; i j=1,..., n. Next, define the
whose entries are the #? functions a,;(1). where 1, j=1,...,

vectors g(z). v, y' by the relations
9, (1) 1y

s={ 20, ¥ P2, vl ). -
gnl?) n Vn
Then the system (4.1) can be written in the form
y'=A{)y+e(). (4.8)

Exercise
1. Given the system
Yi=y,+cost
{.r‘: =)
Define the matrix A(r) and the vectors y. ¥, g(r), and write this system in the
form (4.8).

Before proceeding with the definition of a $olution and a discussion of
the system (4.8), we need the following definitions.

Definition 1. A matrix (such as A (#)) or a vector (such as g(r)) is continuous
on an interval # if and only if each of its entries is a continuous Junction at each
point of 5.

Definition 2. An nxn marrix B(1) or a vector u(f) with n components, de-
Jfined on an interval 5 and given respectively by

byy(t) byy(r) - bya(?) uy (¢)
B(1)= bzl.:(f) bz:;(f) bzz(f] . u()= ”25(3} ’
bnl (I) bn.'z “) e bnﬂ (f) u, (f)

is differentiable on 5 if and oni v if each of its entries is differentiable at ever y
point of F. Their derivatives are given by

Ba() bal) b0 G0
.B'(f)= bll:(f) b22(r) biln.(f) , I.I’(f)= ”:".:(t)

?

b bal) -y b0 (1)




4.1 Introduction 117

respectively. Similarly, the matrix B(1) or the vector u(t) is integrable on an

interval (c, d) if and only if each of its entries is integrable on the interval (c, d)
Their integrals are given by

LS

by, (1) dt by, (1) dt

d

B(r) di= "n(')df jbumd:

——

d . d d :
J b, (¢) dt [ bo(t)dt - I b..(t) dt
I_ [4 (4 [

]"(f] | | w0

Exercises
u‘/ 2. Evaluate the derivatives of each of the following vectors or matrices:

[ e q
a) B[r)=[sint 0 cost for—oo<t<om.
7 1

b) B(‘)=[ cost sim]

for—am<i<om.
—sint  cost

¢ B(n)= [Ze" {2!+1)82‘] for—o<t<oo.

logt
d) u[t}=[ t logt l for 0<t<oo (and where logt is the natural
t* logt logarithm of 1).
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I'-:rr-l-:'1-:.'!.

lad Bd ==
[

¢) u(f)=

b

3. Evaluate [} B(s) dror [§ u(1) difor cach of the matrices B(r) or vectors u(r)in Exercise
S i

\. [Hine: In parts () and (d). integrate by parts.]

4. Isthe vector
1)
u[r]=[r1 ]

continuous on the interval 1 $1<27 \ _
Is it continuous on the interval = <t<1? Explain.

We are now ready to say what is meant by a solution of system (4.8).

Definition 3. Let A(1) be a contimwous nxn matrix on an interval 5. Lei
g(1) be a continuous vector with n compenents on the same interval J. A
solution of the sysiem

y=A(1) y+g(!) (4.8)

on some interval § (where  is contained in J) is a vector u(t) whose derivative
u'(t) is continuous on the interval § and such that

u'(t)=A(t) u(t)+g(t)

Jor every t on ¢ . (Note at this point that the interval # is not necessarily the
same as J'.)

Example 2. Consider the scalar (n=1) differential equation y'= —y+ 1. Then u(f)=
=e "'+1 is a solution on the interval — oo <s<o. For u'(r) is continuous on
—X<i<wand u'(f)=—e"". Thus t'(f)= —¢ "= —u(t)+1.

¢m=[§]

is a solution of the system (4.8) for —w<r<w, where n=2

Am=[‘,’ 5] 2(1)=0.

Clearly ¢(r) is differentiable for — o0 <7< o (because ¢

¢'(1)= [;]

Example 3. Show that

is) and
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On the other hand, by matnix veetor multiplication

0
f‘{'}¢[f1=[1 :J] [:jl=[$] —m<t<w.

l=A(Nd(), -w<i<m.

Thus

In Chapters 1 and 2, we saw that with a differential equation, one usually
associates a particular initial condition. For example, the solution u(t)
=¢~ '+ 1 of Example 2 satisfies at 1=0 the initial condition u(0)=2. More
gcncraliy. suppose we consider the system (4.8) together with the initial con-
dition ¥(fo)=Yo, Where [, is a given number in the interval # and where
yo is a given vector in n-dimensional Euclidean space.

Definition 4. By a solution of the initial value problem,

Yy=A()y+glt), y(to)=Yo. (4.9)

we mean a solution u(t) of the system y' = A(t) y +g(r) on an interval § con-
taining the point 1y, such that u(ty)=y,. ;

Our object will be to learn as much as possible about such initial value
problems. As a matter of fact, when n=1 the initial value problem (4.9) can
always be solved, and we have already obtained a formula for the solution.
(See Section 1.4, Theorem 1.) Unfortunately, for n>2 the situation is much
more complicated.

Example 4. Show that the vector

cost | _| uy(1)
um=[—sin:]r[u,{t}]
is a solution of the system

.| 01 "
,_[_1 0]‘*' where y [};J

on — o0 <1< oo, satisfying the initial condition

u[l))=[:}].
wo={ o[

Obviously.
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Sce oo 1 and sin ¢ have continnons derfvatives everywhere, we have

wo{ S 3 [

S. Show that

]

™ a soluton of the system of Example 4 on - x <r< o satisfving the initial

condition
v = [{:] .

w(t)=c,ur)+cv(1).

6. Show that

where e(r). v(r) arc given m Example § and Exercise S, respectively, and where
€4+ €; @rT any constants. s a solution of the initial-value problem

SRR

for ~x <t<x.

7. Show thar
] 2]
-e
= 2 solution of the mitial-value problem

""=[? gr]' um=[:]

onthemienal —x <1<

If the Linear system (4.8) has a very special form, it can be solved com-
pletely. We illustrate this with the following examples and exercises.

Example 5. 1) Solve the imstizl-value problem (4.9) with n=2,

w=[3 5] w00

where d,. d; arec constanis
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Here the system (4 9) has the very simple form

Y'l'd.lf.. F.'!ﬂjﬂrgui ‘.‘ |4}|
Yy=dyy;. .l'z'fﬂl‘*’}'u;f

in which the differential equations are not linked to one another and each can be wolved
separately. By separating variables (see, for example. Example | and Exercise |, Secton
I.1) we have that &,()=¢""""y,, is the solution of the first equation f(or
—x<t<x and é,(t)=¢"""" y,, is the solution of the second equation for
—m<t<x. Thus

¢, (1) Yo cxpd, (1 —1p) =
¢{IJ‘[¢:{I)]=|:J'OZ “P“:‘f—'ul]' et

1s the solution of (4.10).
ii) Solve the initial-value problem (4.9) where A(r) is the n < n diagonal matex

d, 0
A()= d: and g(1)=0.
0 )
and where d,, d,. .... d, are constants. It 1 clear that the th equation of this
system is simply
Yi=dy.  ylte)= Yoy
Its solution (by the same method as in part (1)) is given by
d,(0)=yo, expd)(t—1g), —x<I<T.
Thus
@, (1) Yor expd, (t—tg)
ol1)= ‘1:’:(') & J'o:: expd,(t—1to)
) | | vonexpdLt=10)

— LTI X

i) Solve the initial-value problem (4.9) if A(r) 15 the matnx in part (u) and g7} » any
continuous vector function g(f) on — x <¢< . Here the jth equavon ©
.'!".=f-‘,}’;+u,-'[f}- _";{IO}=.VOJ

which is a linear first-order scalar differenual equation. Thus by Theorem 1.
Section 1.4, especially Eq. (1.23), with p(1)=d, and q(1) =g, (7). we have
1
}'j{"=}'w GIP{-I.‘- p = IIJ)+ j[ﬂpd;[! o ‘)] H;(’I "!

I



q (} o l_ﬁ—‘m
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Exercises

TR
K Find & solutson @ of the mitial-value problem

Fi==r,. !‘ﬂju[f]
F2=0, %0,

[#em: Salve the tire oquation and substitute in the second cqun;ﬁ;:_. S%Iw: this
\ What is the interval of vali iy’
SQuanon by wung Theorem 1. Sechon 14

9. Find 2 salution @ of the mitial-valoe problem

S
=3, %1),;,

10. Describe & method for solving the “tnangular system"
'J““H'J"‘H'." T,
£ R R +ﬂhi'.

. ;= a

» - '.l'l-'.‘|1.ﬁl' 1.ala

L

where 4, with /> are Consants . note that @, with s <, are zera.
1. Fmnd » solataon of the ¢ of the initalvalue problem

=)+ () 0
ai " mef?]
where /{7) 15 8 contmuons funcuon [Ha

Definc ¢ ()= (+3,01) ]

nangular™
Mccessive solug

Exercucs 8. 9, and 10 shoy thar ~ Systems of first-order
differential cquations can be solved by

1on of scalar first-order
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equations However, a dystem that is not triangular cannot, in general, be
solved by putting it in triangular form as one might first guess, because the
elementary row operations that triangulate the right-hand ude (that 1. the
coefficient matrix 4) destroy the solution of the derivatives on the lefi-hand
wde Note that this difficulty does not anse in the case of linear algebrax
equations

The evamples m Section 2 1, particularly Equation (2 11) lead us 10 2
specific hinear second-order scalar differential equation with mitial con-
dions. These can be reduced o an initial-value problem for a linear system
of two first-order equations of the form (4 9) by the following method.

Example 6. Show that the scalar second-order linear mitial value

"-*P{” _'I" ""-"” "'(”- "Hnl"n- f"nl"""h- “”]

where p. ¢. r are given functions continuous on an interval 7 1, s 7 and g, 7, e
given constants, can be reduced 10 a system of the form (4 9)

In agreement with Definition 4, by a solution of (4 11) on a0 interval J contemed
n # we mean a function w(r) such that w (1), » (1) exist and sre contmuous o sach
pownt of #, such that w” (1) pl0) w (1) & qli) w()=rl1) for every t m 7 snd axh e

w(ta)=n,. w (o) =1, The idea is 10 introduce new unknowns v, and r, by mesns of
the definitions y, =y, ¥, =" Then

—

T T
} vy=¥ = =p(0) v =gl y v r(t)= —plr) vy~ qith v, > rli).

This suggests that the given initial-value problem (4 11) can be described By the mital-
value problem R e

A 0 1 0 ",
. -[ -4l - pml’ *[r{n]' ’“‘"[-h_lh" e
at

Note that (4.12) is a special case of (4.9) with a=2 and A1), gl duplayed 0o 4 12

We will now show the ninal-value problenu (4.11) and (4.12) wre cquavalon: n e
sense that given a solution of either one, we cun consiruct @ wistion of he sther =
More precisely, let (1) be a solution of (4.11) on some nterval # contsoung 1, Define
the functions ¢, and ¢, on J by the relations

@)= wi) ;=9 10
Define the vector & by the relations

w here

[ @.(0)
.‘“ 3 L ¥ {1 I']

We claim that §(r) 15 a solution of (613 vn J Clearly.

o] _[wia) _[n.]_
" [m:.L L- ol “Loa )™

-
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: ; i ion of (4.14). Conversely let u(r) be any
hi s that this particular ¢ is a solution 0 !
u?;?ﬂ;b:r‘:: 149) on #. Define w(t)=u, (1) (1.€., mc_ﬁrsl compnncnl of u). Wer;ﬂaﬁn th,?l
so_ur 1 ‘n 1s a solution of (4.13) on #. This proof 1s alsp very similar to the
- _ﬂuncﬂﬂﬂ" 2 carried out in Example 6 and we shall leave it to the reader as an
special case n=2

_ 3 -
We remark that whereas every nth-order scalar equation is equwaleqt toa
system of first-order equations (as shown in Example 7), the converse is not
true. For example, the system

B

cannot be made equivalent 10 a second-order scalar equation, because the
coefficient matrix has the wrong form.

Exercises

12. For each of the following initial

-value problems, write an equivalent initial-value
problem for a first-order system:

) ¥V 42y +Ny=e", ¥(1)=7, Y(l)=-2

b) 2" =5r'y +(cos) y=logy, Y2=1,y(@2)=0

c) Y =6y +3y'+e"y=sim, y(0)=0, ¥(0)=0, y'(0)=0
d) ¥Y+16y=1¢. Y0)=1,y(0)= _1.}.»-(0122'},-{0}:0

problem for a first-order system : €Ms 10 an equivalent initial-value
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kA p
a) y" 4 — y=— cosmt b) F+—0=0
m m L

y(0)=y,, ¥ (0)=0 0(0)=0,. 7 (0)=0

14. Reduce each of the following initial-value problems to an equivalent initial-value
problem for a first-order system:

a) V457 -Ty+6z=¢
2" —2:4137—15y=cost,

where
y(0)=1. ¥(0)=0, 2(0) =0, Z(0)=1.
[Hint: Let w,=y. wy=y'. wy=2, wy=2"]
b) ¥ +5:+2y=203
46y +112=3y—z=1,
where

y(0)=1,2(0)=2, Z(0)=3.

In Exercise 13 above we have seen how the equations for the simple
mass-spring system (Section 2.1) and for the linearized pendulum can be
reduced to initial-value problems for linear systems of first-order equations
of the form (4.9). To close this introductory section we shall consider two
more examples of more complicated physical systems and show how they
also lead to an initial-value problem of the form (4.9).

Example 8. A weight of mass m, is connected to a ngd wall by a spring having
spring constant k, > 0. A second weight of mass m, is connected to the weight of mass
m, by means of a spring having spring constant k,>0. An external face F(¢) is applied
to the second weight. The whole system slides in a straight line on a fncuonless
table, as shown in Fig. 4.1. Let y,(r) denote the displacement of the first weight from
its rest position (equilibrium) and y,(r) the displacement of the second weight from
equilibrium. At equilibrium y, =y, =0 and both springs are unstretched.

vy
é
% k, i,
7 m, m, = F (1)
7 L) Ty
/
7 2
yo=0,w(1) ya=0,¥{1)
Figure 4.1

a) If at time t=0 the system starts from rest with initial displacements ¥, (0)=¥yo.
y,(0)=y10, determine the motion of the system. 7
b) If my=my=m, k,=k,=k, and F(1)=0, show that the motion of the system 1s
a superposition of two simple harmonic motions with natural frequencies



a0 Lined Syst
| problem is 1o solve the initial-value problem
atical P
st that the mathem i __*"‘ +il',(f}' rl((g::::lllﬁ volt c
GO Y i, (0)=1amper
Iy =z;1d j:: ’ 3 (0)= 1.2 volts (4_22)
ry=v - ; ;
ctions s U2 M1 4{r) is 8 glven souce clirvent, g 5
for the unknowT _f“:d for 0<1< - This iniual-ya_luc problem consists of a SYStcm'or
given funﬂlgn :I:::gcr differential equations and it is clearly of the form (4.9). 1, o
three linear rs '
solved completely in Section 3.7.
QUENESS THEOREM

42 THE EXISTENCE AND UNI , :
(he scalar first-order differential equation (Theorem 1, Secyjop
licit expression for the solution of the initj).

give an €xp : !
ever. for second- Of higher-order scalar differengy|

erally for first-order systems, it is frequenlly not
ssion for the solution. For example, the

In discussing
1.4), we were ableto

value problem. How
equations and more gener
possible to give an cxp_»hcn expre
scalar differential equation
iy +1y +(*=p7) y=0,

where p is a constant, is called the Bessgl equa{:'on (of ipdex p), and arises in
many problems of mathematical physics. This equation and its solutions
have been studied extensively. Except for special values of p, such as p=4 or
p=4, these solutions cannot be expressed in terms of a finite number of
elementary functions. Nevertheless, the Bessel equation does have solutions
for every initial-value problem with 1,#0. This fact is a special case of the

following genera, theorem.

Theorem 1. Le1 A(t) be a continuous nx n matrix on some interval #. Let
g(1) be a vector with n components continuous on the same interval 5. Then

for every to in 5 and every constant vector W, the initial-value problem
y=A@)y+g(), y(to)=n
has a unigue solution existing on the same interval ¥ .

You must refer to Section 8.6 for the proof. Our objective here will be
to learn to apply the theorem. In Theorem 1, the matrix A(¢) and the vector
g(¢) may have real- or complex-valued entries.

(4.9)

Example 1. Let n=3 and consider the initial-value problem (4.9) with

[ 1 -t 0]
1
o 0 -1 ¢ 1
Alt)=|r*-1 . gl)=|cost|, 1,=0, y=| O].
5 ] _¢ ]
= 2+1

Determine wh s initj
interval J of ether this nitial-value problem has a unique solution and find the largest
existence of this solution in accordance with the theorem
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The entries of A(r) and g(n). with
— @0 <t<o. However, | /(s — 1) fails t
1. therefore, tells us that the given
¢(b(0)=n). and the solution ¢ exists

the exception of 1/(t*—1), are continuous on

0 be continuous at r= + 1. Since 1,=0, Theorem
initial-value problem has a unique solution

/ on the interval —1<r<1. It is worth pointing

out that If we choose a different lo. for example r,=10, the new initial-value

II“Oblfm will also have a unique solution V(¥(10)=n) and the solution ¥ will exist for
<I<m,

We now apply Theorem 1| to the important special case of the initial-
value problem for a linear second-order scalar equation

YHpW) ' +q) y=r(t),  ylto)=n,. y'(to)=n,. (4.11)
where p,

9. and r are functions continuous on some interval .# and fo 15 a
point of #. In Exam

ple 6, Section 4.1, we have seen that the initial-value
problem (4.11) is equivalent to the initial-value problem

Al ST L ST 1 IO

to which Theorem 1 can be applied directly. The requirement that A(r) and
g(r) be continuous on 1 tran

slates into the following result.

Corollary I to Theorem 1. Le: P: 4. r be given funciions continuous on an
interval 5 and let t, be in #. Then the initial-value problem (4.11) has a unique
solution w(w(t1o)=n,. w'(to)=mn,) that exists on the same interval f.

Readers who studied Chapter 3 should note that this is precisely Theo-
rem |, Section 3.1.

Example 2. Consider the initial-value problem
(1 +4) ¥ +1y +(sint) y=1, ¥(D)=2, y(1)=0.
Determine the existence and uniqueness of the solution as well as the interval of
existence. :
Toapply Corollary 1, we must first reduce the

given differential equation to the exact
form of (d.11). This is accomplished

by dividing by (> +4). Thus, in the notation of the
corollary r sint |
M=z W= "=z

Since these functions are continuous for — oo <1< . the given initial-value problem has
a unique solution existing on — 0 <r< .

Similar to Corollary 1, we may consider the more general initial-value
problem

YO+ () ¥V 44 gy (1) ¥ 4Pu(0) y=r(1) .
Y=t ¥ (to) =¥ eg) =, (@13)

for the scalar nth-order linear equation. From Example 7, Section 4.1, and
from Theorem | we obtain immediately the following.



