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S, =8(xp,..0,x,)=xk+ - +x¥eR[x,,...,x,] for k>1. Then the for-
mula
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holds for k > 1, where m = min(k, n).

1.76. Theorem (Waring’s Formula). With the same notation as in
Theorem 1.75, we have

sk=z(_l)i2+i4+i6+--

for k =1, where the summation is extended over all n-tuples (i,,...,i,) of
nonnegative integers with i, +2i, + - - - + ni, = k. The coefficient of 6{'a5*- - -
a,» is always an integer.
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4. FIELD EXTENSIONS

Let F be a field. A subset K of F that is itself a field under the operations of
F will be called a subfield of F. In this context, F is called an extension
(field) of K. If K = F, we say that K is a proper subfield of F.

If K is a subfield of the finite field F,, p prime, then K must contain
the elements 0 and 1, and so all other elements of F, by the closure of K
under addition. It follows that F, contains no proper subfields. We are thus
led to the following concept.

1.77. Definition. A field containing no proper subfields is called a prime
field.

By the above argument, any finite field of order p, p prime, is a
prime field. Another example of a prime field is the field Q@ of rational
numbers.

The intersection of any nonempty collection of subfields of a given
field F is again a subfield of F. If we form the intersection of all subfields of
F, we obtain the prime subfield of F. It is obviously a prime field.

1.78. Theorem. The prime subfield of a field F is isomorphic to
either F, or Q, according as the characteristic of F is a prime p or 0.

1.79. Definition. Let X be a subfield of the field F and M any subset of
F. Then the field K(M) is defined as the intersection of all subfields of F
containing both K and M and is called the extension (field) of K obtained
by adjoining the elements in M. For finite M = (0,,...,6,) we write K(M) =
K(8,,...,0,). If M consists of a single element 6 € F, then L = K(8) is said
to be a simple extension of K and @ is called a defining element of L over K.
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Obviously, K (M) is the smallest subfield of F containing both K and
M. We define now an important type of extension.

1.80. Definition. Let K be a subfield of F and € F. If § satisfies
a nontrivial polynomial equation with coefficients in K, that is, if
ad"+ - +ab+a,=0 with a, € K not all being 0, then 8 is said to be
algebraic over K. An extension L of K is called algebraic over K (or an
algebraic extension of K) if every element of L is algebraic over K.

Suppose # € F is algebraic over K, and consider the set J=
{(f € K[x): f(8)=0). It is easily checked that J is an ideal of K[x], and we
have J = (0) since # is algebraic over K. It follows then from Theorem 1.54
that there exists a uniquely determined monic polynomial g € K[x] such
that J is equal to the principal ideal (gJ}. It is important to note that g is
irreducible in K[x]. For, in the first place, g is of positive degree since it has
the root 8; and if g = h h, in K[x] with 1 < deg(h,) < deg(g) (i =1,2), then
0=g(0)= h,(0)h,(9) implies that either k, or h, is in J and so divisible by
g, which is impossible.

1.81. Definition. If § € F is algebraic over K, then the uniquely de-
termined monic polynomial g € K[x] generating the ideal J={f € K[x]:
f(0)=0) of K[x]is called the minimal polynomial (or defining polynomial, or
irreducible polynomial) of § over K. By the degree of § over K we mean the
degree of g.

1.82. Theorem. If @ € F is algebraic over K, then its minimal
polynomial g over K has the following properties:

(i) g is irreducible in K[x].
(ii) For f € K[x] we have f(0) =0 if and only if g divides f.
(iil) g is the monic polynomial in K[x] of least degree having 6 as a
Foot.

Proof. Property (i) was already noted and (ii) follows from the
definition of g. As to (iii), it suffices to note that any monic polynomial in
K[x] having @ as a root must be a multiple of g, and so it is either equal to g
or its degree is larger than that of g. ]

We note that both the minimal polynomial and the degree of an
algebraic element § depend on the field K over which it is considered, so
that one must be careful not to speak of the minimal polynomial or the
degree of § without specifying K, unless the latter is amply clear from the
context.

If L is an extension field of K, then L may be viewed as a vector
space over K. For the elements of L ( =* vectors”) form, first of all, an
abelian group under addition. Moreover, each “vector” a€ L can be
multiplied by a “scalar” » € K so that ra is again in L (here ra is simply the
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product of the field elements r and a of L) and the laws for multiplication
by scalars are satisfied: r(a+B)=ra+ 8, (r+s)a=ra+sa, (rs)a=
r(sa), and la=a, where r,s€eKand a,f € L.

1.83. Definition. Let L be an extension field of K. If L, considered as a
vector space over K, is finite-dimensional, then L is called a finite extension
of K. The dimension of the vector space L over K is then called the degree
of L over K, in symbols [L: K.

1.84. Theorem. If L is a finite extension of K and M is a finite
extension of L, then M is a finite extension of K with

[M:K]=[M:L][L:K].

Proof Put[M:L]l=m,[L:K]=n, and let {(a,...,a,} be a basis
of M over L and (B,,...,B,} a basis of L over K. Then every a€ M is a
linear combination a=vy,a;+ - +7v,a, with y,€ L for 1<i<m, and
writing each v; in terms of the basis elements B, we get

a= ZY,-“,-'—' Z (Z "ij:Bj)ai= Z Z 1P

i=1 iml\j=1 WA
with coefficients r; € K. If we can show that the mn elements Ba,,

l<i<m, < j<n, are linearly independent over K, then we are done. So
suppose we have

with coefficients s;; € K. Then

) ( 2 Sij j)ai=0’
i=1\ =1
and from the linear independence of the «; over L we infer
2 5,8=0 forl<igm.
j=1

But since the B; are linearly independent over K, we conclude that all s;; are
0. =]

1.85. Theorem. Every finite extension of K is algebraic over K.

Proof. Let L be a finite extension of K and put [L: K]=m. For
0 L, the m+1 elements 1,6,...,0™ must then be linearly dependent over
K, and so we get a relation ay +a,0+ - -+ +a,0™ =0 with a, € K not all
being 0. This just says that 4 is algebraic over K. 0
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For the study of the structure of a simple extension K(8) of K
obtained by adjoining an algebraic element, let F be an extension of K and
let @ € F be algebraic over K. It turns out that K(8) is a finite (and
therefore an algebraic) extension of K.

1.86. Theorem. Let @ € F be algebraic of degree n over K and let g
be the minimal polynomial of 8 over K. Then:

(i) K(9) is isomorphic to K[x]/(g).
(i) [K(0):K)=nand(1,0,...,6"" ") is a basis of K(8) over K.
(iii) Every a € K(0) is algebraic over K and its degree over K is a
divisor of n.

Proof. (i) Consider the mapping 7: K[x] — K (), defined by 7(f)
= f(0) for f € K[x], which is easily seen to be a ring homomorphism. We
have kerr={f € K[x]: f(#)=0)=(g) by the definition of the minimal
polynomial. Let S be the image of 7; that is, S is the set of polynomial
expressions in @ with coefficients in XK. Then the homomorphism theorem
for rings (see Theorem 1.40) yields that S is isomorphic to K[x]/(g). But
K[x]/(g) is a field by Theorems 1.61 and 1.82(i), and so S is a field. Since
KcScK(@8) and 0§, it follows from the definition of K(#) that
S = K(0), and (i) is thus shown.

(i) Since S = K(#), any given a € K(6) can be written in the form
a= f(0) for some f € K[x]). By the division algorithm, f=gg + r with
q,r € K[x] and deg(r)<deg(g)=n. Then a= f(0)= q(8)g(8)+r(0)=
r(6), and so a is a linear combination of 1,8,...,0"~! with coefficients in K.
On the other hand, if ag+a0+ --- +a,_,0""'=0 for certain g, € K,
then the polynomial h(x)=ay,+a;x+ --- +a,_,x""'€ K[x] has 8 as a
root and is thus a multiple of g by Theorem 1.82(ii). Since deg(h)<n=
deg(g), this is only possible if # = 0—that is, if all @, = 0. Therefore, the
elements 1,0,...,6""! are linearly independent over K and (ii) follows.

(ii) K(@) is a finite extension of K by (il), and so a€ K(8) is
algebraic over K by Theorem 1.85. Furthermore, K (a) is a subfield of K(8).
If d is the degree of a over K, then (ii) and Theorem 1.84 imply that
n=[K(8): K]=[K(0): K(&)]K(a): K]=[K(0): K(a)]d, hence d di-
vides 7. o

The elements of the simple algebraic extension K(#) of K are
therefore polynomial expressions in §. Any element of K(#) can be uniquely
represented in the form ay+a,0 + -+ +a,_,0"" ! withag, € K for 0 <i <
n—1.

It should be pointed out that Theorem 1.86 operates under the
assumption that both K and @ are embedded in a larger field F. This is
necessary in order that algebraic expressions involving § make sense. We
now want to construct a simple algebraic extension ab ovo—that is, without
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reference to a previously given larger field. The clue to this is contained in
part (i) of Theorem 1.86.

1.87. Theorem. Let f € K|[x] be irreducible over the field K. Then
there exists a simple algebraic extension of K with a root of f as a defining
element.

Proof. Consider the residue class ring L = K[x]/(f), which is a
field by Theorem 1.61. The elements of L are the residue classes [h]=h +(f)
with 2 € K[x]. For any a € K we can form the residue class [a] determined
by the constant polynomial a, and if a, b € K are distinct, then [a]=[b]
since f has positive degree. The mapping a — [a] gives an isomorphism
from K onto a subfield K’ of L, so that K’ may be identified with K. In
other words, we can view L as an extension of K. For every h(x)=
agtax+ - +a,x"€K[x] we have [h]=[ag+a;x+ - +a,x"]=
[agl+[alx]+ - - - +[a,][x]"=a,+a,[x]+ --- +a,[x]™ by the rules for
operating with residue classes and the identification [a,;] = a,. Thus, every
element of L can be written as a polynomial expression in [x] with
coefficients in K. Since any field containing both X and [x] must contain
these polynomial expressions, L is a simple extension of K obtained by
adjoining [x]. If f(x)=by,+bx+ -+ +b,x", then f([x])=b,+ b,[x]
+ -+ b,[x]"=[by+b,x+ - +b,x"]=[f]=[0], so that [x] is a root of
fand L is a simple algebraic extension of K. O

1.88. Example. As an example of the formal process of root adjunction
in Theorem 1.87, consider the prime field F, and the polynomial f(x) = x?
+ x +2 €F;[x], which is irreducible over F;. Let § be a “root” of f; that is,
0 is the residue class x +(f) in L =F,[x]/(f). The other root of f in L is
then 20 +2, since f(20 +2)=(20 +2)2 +(20 +2)+2=6>+60+2=0. By
Theorem 1.86(ii), or by the known structure of a residue class field, the
simple algebraic extension L =F;(0) consists of the nine elements
0,1,2,6,0 +1,0 +2,26,26 + 1,20 +2. The operation tables for L can be
constructed as in Example 1.62. 0O

We observe that in the above example we may adjoin either the root
@ or the root 20 +2 of f and we would still obtain the same field. This
situation is covered by the following result, which is easily established.

1.89. Theorem. Let a and B be two roots of the polynomial f € K[x]
that is irreducible over K. Then K(a) and K(B) are isomorphic under an
isomorphism mapping o to B and keeping the elements of K fixed.

We are now asking for an extension field to which all roots of a given
polynomial belong.

1.90. Definition. Let f € K[x] be of positive degree and F an extension
field of K. Then f is said to split in F if f can be written as a product of
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linear factors in F[x]—that is, if there exist elements a,, a,,...,a, € F such
that

f(x)=a(x-o)(x—a) - (x—a,),
where a is the leading coefficient of f. The field F is a splitting field of f over
K if f splits in F and if, moreover, F = K(a,, a,,...,a,).

It is clear that a splitting field F of f over K is in the following sense
the smallest field containing all the roots of f: no proper subfield of F that
is an extension of K contains all the roots of f. By repeatedly applying the
process used in Theorem 1.87, one obtains the first part of the subsequent
result. The second part is an extension of Theorem 1.89.

1.91. Theorem (Existence and Uniqueness of Splitting Field). If K
is a field and f any polynomial of positive degree in K[x], then there exists a
splitting field of f over K. Any two splitting fields of f over K are isomorphic
under an isomorphism which keeps the elements of K fixed and maps roots of f
into each other.

Since isomorphic fields may be identified, we can speak of the
splitting field of f over K. It is obtained from K by adjoining finitely many
algebraic elements over K, and therefore one can show on the basis of
Theorems 1.84 and 1.86(ii) that the splitting field of f over K is a finite
extension of K.

As an illustration of the usefulness of splitting fields, we consider the
question of deciding whether a given polynomial has a multiple root
(compare with Definition 1.65).

1.92. Definition. Let f € K[x] be a polynomial of degree n>2 and
suppose that f(x)=as(x—a;) - (x — a,) With «,,...,a, in the splitting
field of f over K. Then the discriminant D( f) of f is defined by

D(f)=a(2)"—2 1_[ (ai_aj)z'
I<i<jgn

It is obvious from the definition of D( f) that f has a multiple root if
and only if D(f)= 0. Although D(f) is defined in terms of elements of an
extension of X, it is actually an element of X itself. For small » this can be
seen by direct calculation. For instance, if n=2 and f(x)=ax?>+bx + c=
a(x—a,)(x —ay), then D(f)=a’(e;~ @)’ =a*((¢, + a;)* —deja;) =
a*(b*a=* —4ca™ "), hence

D(ax?+ bx + ¢) = b? - 4ac,

a well-known expression from the theory of quadratic equations. If n =23
and f(x)=ax’ +bx*+ex+d=a(x— a))(x — a}(x — a;), then D(f)=
a*(a, — a,)*(a; — a3)*(a, — a;)?, and a more involved computation yields

D(ax® + bx* + cx +d) = b%c* —4bd —4ac® —27a’d* +18abed. (1.9)
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In the general case, consider first the polynomial s € K[x,,...,x,] given by
s(xp,eeox,)=ad" 2 TI (x,- xj)z.
I€i<jgn

Then s is a symmetric polynomial, and by a result in Example 1.74 it can be
written as a polynomial expression in the elementary symmetric polynomi-
als ,,...,0,—that is, s = h(0,,...,0,) for some h € K[x,,...,x,]. If f(x)=
agx"+ax" '+ .- +a,=ay(x—a;) - (x—a,), then the definition of
the elementary symmetric polynomials (see again Example 1.74) implies that
o,(ay,...,a,)=(—D*a,a;5' € K for 1 < k < n. Thus,

D(f)=s(ay,...,a,)=h(0/(ay,...,a,),...,0,(ay,...,a,))
=h(-aay',....(-1)"a,a;') K.

Since D(f)€ K, it should be possible to calculate D(f) without
having to pass to an extension field of K. This can be done via the notion of
resultant. We note first that if a polynomial f € K[x] is given in the form
f(x)=ayx"+a;x""'+ .- +a, and we accept the possibility that a, =0,
then n need not be the degree of f. We speak of n as the formal degree of f;
it is always greater than or equal to deg(f).

1.93. Definition. Let f(x)=ayx"+a,x" '+ --- +a,€ K[x] and g(x)
=byx™+ b, x™" '+ .-+ + b, € K[x] be two polynomials of formal degree
n resp. m with n, m € N, Then the resultant R( f, g) of the two polynomials
is defined by the determinant

a, a a, 0 01
0 a a -+ a, 0 - 0
+ M Iows
o - 0 a, aq a,l)
R(f.8)= by, b, b, 0 0
0 b b, b, 0
> 1L TOWS
0 0 b, b, b,|)

of order m + n.
If deg(f)=n (e, if ay;=0) and f(x)=ay(x—a;)---(x—a,) in
the splitting field of f over K, then R(f, g) is also given by the formula

R(/,8)= a8 [T g(a). (1.10)

In this case, we obviously have R(f, g)=0 if and only if f and g have a
common root, which is the same as saying that f and g have a common
divisor in K [x] of positive degree.



