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plicative inverse, so that (a+ M)}(r + M)=1+ M for some r €
R. This implies ar + m =1 for some m € M. Since J is an ideal,
we have 1 € J and therefore (1)= R C J, hence J = R. Thus M is
a maximal ideal of R.

(ii) Let P be a prime ideal of R; then R /P is a commutative ring
with identity 1+ P =0+ P. Let (a+ P)(b+ P)=0+ P, hence
ab € P. Since P is a prime ideal, either a € P or b € P; that is,
eithera+ P=0+ P or b+ P=0+ P. Thus, R/P has no zero
divisors and is therefore an integral domain. The converse
follows immediately by reversing the steps of this proof.

(iii) This follows from (i) and (ii) since every field is an integral
domain.

(iv) Let c€R. If ¢ is a unit, then (¢)= R and the ring R /(c)
consists only of one element and is no field. If ¢ is neither a unit
nor a prime element, then ¢ has a divisor @ € R that is neither a
unit nor an associate of ¢. We note that a = 0, for if a =0, then
¢ =0 and a would be an associate of ¢c. We can write ¢ = ab with
b € R. Next we claim that a & (¢). For otherwise a = ¢d = abd
for some d € R, or a(1 — bd)= 0. Since a = 0, this would imply
bd =1, so that d would be a unit, which contradicts the fact that
a is not an associate of c. It follows that (¢) € (a) € R, where all
containments are proper, and so R /(c¢) cannot be a field be-
cause of (i). Finally, we are left with the case where ¢ is a prime
element. Then (¢) = R since ¢ is no unit. Furthermore, if J 2 (¢)
is an ideal of R, then J=(a) for some a€ R since R is a
principal ideal domain. It follows that ¢ € (a), and so a is a
divisor of c. Consequently, a is either a unit or an associate of ¢,
so that either / = R or J = (¢). This shows that (¢) is a maximal
ideal of R. Hence R /(c) is a field by (i). O

As an application of this theorem, let us consider the case R =Z. We
note that Z is a principal ideal domain since the additive subgroups of Z are
already generated by a single element because of Theorem 1.15(%1). A prime
number p fits the definition of a prime element, and so Theorem 1.47(iv)
yields another proof of the known result that Z/(p) is a field. Conse-
quently, ( p) is a maximal ideal and a prime ideal of Z. For a composite
integer n, the ideal (n) is not a prime ideal of Z, and so Z /(n) is not even
an integral domain. Other applications will follow in the next section when
we consider residue class rings of polynomial rings over fields.

3. POLYNOMIALS

In elementary algebra one regards a polynomial as an expression of the
form ay+ a;x+ --- +a,x". The a,’s are called coefficients and are usually
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real or complex numbers; x is viewed as a variable: that is, substituting an
arbitrary number a for x, a well-defined number a, +aa+ -+ +a,a" is
obtained. The arithmetic of polynomials is governed by familiar rules. The
concept of polynomial and the associated operations can be generalized to a
formal algebraic setting in a straightforward manner.

Let R be an arbitrary ring. A polynomial over R is an expression of
the form

n
f(x)=Y ax'=ay+ax+---+a,x",
i=0

where n is a nonnegative integer, the coefficients a;, 0 <i < n, are elements
of R, and x is a symbol not belonging to R, called an indeterminate over R.
Whenever it is clear which indeterminate is meant, we can use f as a
designation for the polynomial f(x). We adopt the convention that a term
a;x' with g, =0 need not be written down. In particular, the polynomial
f(x) above may then also be given in the equivalent form f(x)=a, + a;x
+ - +a,x"+0x"*'+ ... +0x"*", where h is any positive integer. When
comparing two polynomials f(x) and g(x) over R, it is therefore possible to
assume that they both involve the same powers of x. The polynomials

f(x)= % ax' and g(x)= 3 b
i=0

i=0
over R are considered equal if and only if a; = b, for 0 <i < n. We define
the sum of f(x) and g(x) by

f(x)+g(x)= X (a;+b)x".
i=0
To define the product of two polynomials over R, let

f(x)= % ax' and g(x)= 3 b

i=0 j=0
and set
n+m
f(x)g(x)= Y c¢;x*, wherec, = Y a;b;.
k=0 i+j=k

0<ig<n, 0 jsm

It is easily seen that with these operations the set of polynomials over R
forms a ring.

1.48. Definition. The ring formed by the polynomials over R with the
above operations is called the polynomial ring over R and denoted by R[x].

The zero element of R[x] is the polynomial all of whose coefficients
are 0. This polynomial is called the zero polynomial and denoted by 0. It
should always be clear from the context whether 0 stands for the zero
element of R or the zero polynomial.
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1.49. Definition. Let f(x)=2X7_,a,x' be a polynomial over R that is not
the zero polynomial, so that we can suppose a, = 0. Then a, is called the
leading coefficient of f(x) and a, the constant term, while n is called the
degree of f(x), in symbols n = deg(f(x)) = deg(f). By convention, we set
deg(0)= — oo0. Polynomials of degree < 0 are called constant polynomials. 1f
R has the identity 1 and if the leading coefficient of f(x) is 1, then f(x) is
called a monic polynomial.

By computing the leading coefficient of the sum and the product of
two polynomials, one finds the following result.

1.50. Theorem. Letf, g€ R[x]. Then
deg(f + g) < max(deg( f),deg(g)),

deg(fg) < deg(f)+deg(g).
If R is an integral domain, we have

deg( fg) = deg(f)+deg(g). (1.4)

If one identifies constant polynomials with elements of R, then R can
be viewed as a subring of R[x]. Certain properties of R are inheriied by
R[x]. The essential step in the proof of part (iii) of the subsequent theorem
depends on (1.4).

L1.51. Theorem. Let R be a ring. Then:

(i) R[x] is commutative if and only if R is commutative.
(ii) R[x] is a ring with identity if and only if R has an identity.
(iii) R[x] is an integral domain if and only if R is an integral domain.

In the following chapters we will deal almost exclusively with poly-
nomials over fields. Let F denote a field (not necessarily finite). The concept
of divisibility, when specialized to the ring F[x], leads to the following. The
polynomial g € F[x] divides the polynomial f € F[x] if there exists a
polynomial » € F[x] such that f = gh. We also say that g is a divisor of f, or
that fis a multiple of g, or that f is divisible by g. The units of F[x] are the
divisors of the constant polynomial 1, which are precisely all nonzero
constant polynomials.

As for the ring of integers, there is a division with remainder in
polynomial rings over fields.

1.52. Theorem (Division Algorithm). Let g+ 0 be a polynomial in
F[x]. Then for any f € F[x] there exist polynomials q, r € F[x] such that

f=qg+r, wheredeg(r)<deg(g).

1.53. Example. Consider f(x)=2x>+ x*+4x +3€F,[x], g(x)=3x2 +
1 € F5[x]. We compute the polynomials g, r € F[x] with f = gg + r by using
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long division:

4x3+ 2x%+2x + 1

3x24+1 2x3+x*¢ +4x+3
—2x3 -4 x3
x* + X3
—x4 —2x?
x3 +3x2+4x
-x? —2x
3x242x+3
—3x2 -1
2x+2

Thus g(x)=4x>+2x2+2x+1, r(x)=2x+2, and obviously deg(r)<
deg(g)- 0

The fact that F[x] permits a division algorithm implies by a standard
argument that every ideal of F[x] is principal.

1.54. Theorem. F|x) is a principal ideal domain. In fact, for every
ideal J = (0) of F[x] there exists a uniquely determined monic polynomial
g€ Flx]withJ = (g).

Proof. F[x] is an integral domain by Theorem 1.51(iii). Suppose
J = (0) is an ideal of F[x]. Let h(x) be a nonzero polynomial of least degree
contained in J, let b be the leading coefficient of h(x), and set g(x)=
b~ 'h(x). Then g€ J and g is monic. If f € J is arbitrary, the division
algorithm yields ¢, r € F[x] with f = qg + r and deg(r) < deg(g) = deg(h).
Since J is an ideal, we get f — gg = r € J, and by the definition of # we must
have r = 0. Therefore, f is a multiple of g, and so J=(g). If g, € F[x] is
another monic polynomial with J=(g,), then g=c,g, and g, = c,g with
¢, ¢, € F[x]. This implies g = c,c,g, hence c,c,=1. and ¢, and c, are
constant polynomials. Since both g and g, are monic, it follows that g = g,,
and the uniqueness of g is established. 0

L.55. Theorem. Letf,,....f, be polynomials in F[x] not all of which
are 0. Then there exists a uniquely determined monic polynomial d € F[x]
with the following properties: (i) d divides each f,, 1< j<n, (if) any
polynomial ¢ € F|[x] dividing each f,, | < j < n, divides d. Moreover, d can be
expressed in the form

d=b,f,+---+b,f, withb,,....b € F[x]. (1.5)
Proof. The set J consisting of all polynomials of the form c, f,

+ .- +¢,f, with ¢,...,c, € F[x] is easily seen to be an ideal of F[x].
Since not all £, are 0, we have J = (0), and Theorem 1.54 implies that J = (d)
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for some monic polynomial d € F[x]. Property (i) and the representation
(1.5) follow immediately from the construction of d. Property (ii) follows
from (1.5). If d, is another monic polynomial in F[x] satisfying (i) and (ii),
then these properties imply that 4 and d, are divisible by each other, and so
(d)=(d,). An application of the uniqueness part of Theorem 1.54 yields
d=d,. =]

The monic polynomial d appearing in the theorem above is called the
greatest common divisor of f,....f,, in symbols d=gcd(f,,....f,). If
ged(fy,-...f,) =1, then the polynomials f,,...,f, are said to be relatively
prime. They are called pairwise relatively prime if gcd(f;, f;) =1 for 1<i < j
<n.

The greatest common divisor of two polynomials f, g € F[x] can be
computed by the Euclidean algorithm. Suppose, without loss of generality,
that g =0 and that g does not divide f. Then we repeatedly use the division
algorithm in the following manner:

f=ag+n 0 < deg(r,) < deg(g)
g§=q@n+tn 0 < deg(ry) < deg(ry)
n=qrntrn 0 < deg(ry) < deg(ry)
K2 =gt 0 < deg(ry) < deg(r;_))
1= 95417
Hereq,,...,4,., and r{,...,r, are polynomials in F[x]. Since deg(g) is finite,

the procedure must stop after finitely many steps. If the last nonzero
remainder r, has leading coefficient b, then gcd(f, g)=b"'r,. In order to
find ged( f,,..-,f,) for n > 2 and nonzero polynomials f;, one first computes
ged( £}, £2), then ged(ged( £, £;), f5), and so on, by the Euclidean algorithm.

1.56. Example. The Euclidean algorithm applied to
f(x)=2x*+x*+x?+2€F,;[x], g(x)=x*+x>+2xeF,;[x]

yields:
2x0+ X3+ x24+2=(2x2+1)(x* + x2+2x)+x+2
X Hx?H2x=(x+x?+2x +1)(x +2)+1
x+2=(x+2)1.
Therefore ged( f, g) =1 and f and g are relatively prime. O

A counterpart to the notion of greatest common divisor is that of
least common multiple. Let f,,...,f, be nonzero polynomials in F[x]. Then
one shows (see Exercise 1.25) that there exists a uniquely determined monic
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polynomial m € F[x] with the following properties: (i) m is a multiple of
each £, 1 < j < n; (i) any polynomial b € F[x] that is a multiple of each f,
1< j<n, is a multiple of m. The polynomial m is called the least common
multiple of f,,....f, and denoted by m =lem(f,,...,f,). For two nonzero
polynomials f, g € F{x] we have

a”'fg=Ilem(f, g)gcd(f, g), (1.6)

where a is the leading coefficient of fg. This relation conveniently reduces
the calculation of lem( £, g) to that of gcd( f, g). There is no direct analog of
(1.6) for three or more polynomials. In this case, one uses the identity
lem( f,....f,) =lem(lem(f,,...,f,_ ), f,) to compute the least common mul-
tiple.

The prime elements of the ring F[x] are usually called irreducible
polynomials. To emphasize this important concept, we give the definition
again for the present context.

1.57. Definition. A polynomial p € F[x] is said to be irreducible over F
(or irreducible in F[x), or prime in F[x]) if p has positive degree and p = bc
with b, c € F[x] implies that either b or ¢ is a constant polynomial.

Briefly stated, a polynomial of positive degree is irreducible over F if
it allows only trivial factorizations. A polynomial in F[x] of positive degree
that is not irreducible over F is called reducible over F. The reducibility or
irreducibility of a given polynomial depends heavily on the field under
consideration. For instance, the polynomial x?—2 € Q[x] is irreducible
over the field @ of rational numbers, but x2—2=(x+v2)}x —v2) is
reducible over the field of real numbers.

Irreducible polynomials are of fundamental importance for the struc-
ture of the ring F[x] since the polynomials in F[x] can be written as
products of irreducible polynomials in an essentially unique manner. For
the proof we need the following result.

1.58. Lemma. If an irreducible polynomial p in F[x) divides a
product f, - - - f,, of polynomials in F[x), then at least one of the factors f; is
divisible by p.

Proof. Since p divides f, - - - f,,, we get the identity (f, +(p))---
(f,, +(p))=0+(p) in the factor ring F[x]/(p). Now F[x]/(p) is a field
by Theorem 1.47(iv), and so f; +(p) = 0+( p) for some j; that is, p divides
S O

1.59. Theorem (Unique Factorization in F[x]). Any polynomial
f € F[x] of positive degree can be written in the form

f=api - pis, (1.7)
wherea€ F, p,,...,p, are distinct monic irreducible polynomials in F|[x], and
€y,...,€, are positive integers. Moreover, this factorization is unique apart

from the order in which the factors occur.
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Proof. The fact that any nonconstant f € F[x] can be represented
in the form (1.7) is shown by induction on the degree of f. The case
deg(f) =1 is trivial since any polynomial in F[x] of degree 1 is irreducible
over -F. Now suppose the desired factorization is established for all noncon-
stant polynomials in F[x] of degree <a. If deg(f)=n and f is irreducible
over F, then we are done since we can write f = a(a™'f), where a is the
leading coefficient of f and a~'f is a monic irreducible polynomial in F[x].
Otherwise, f allows a factorization f = gh with 1 < deg(g) <n, 1< deg(h) <
n, and g, h € F[x]. By the induction hypothesis, g and & can be factored in
the form (1.7), and so f can be factored in this form.

To prove uniqueness, suppose f has two factorizations of the form
(1.7), say

f=ap7l...pik=bq;il...q"_ir‘ (].8)

By comparing leading coefficients, we get @ = b. Furthermore, the irreduc-
ible polynomial p, in F[x] divides the right-hand side of (1.8), and so
Lemma 1.58 shows that p, divides g, for some j,1< j<r. But g; is also
irreducible in F[x], so that we must have q; = cp, with a constant poly-
nomial c. Since g; and p, are both monic, it follows that g; = p,. Thus we
can cancel p, against ¢, in (1.8) and continue in the same manner with the
remaining identity. After finitely many steps of this type, we obtain that the
two factorizations are identical apart from the order of the factors. O

We shall refer to (1.7) as the canonical factorization of the polynomial
fin F(x]. If F=Q, there is a method due to Kronecker for finding the
canonical factorization of a polynomial in finitely many steps. This method
is briefly described in Exercise 1.30. For polynomials over finite fields,
factorization algorithms will be discussed in Chapter 4.

A central question about polynomials in F[x] is to decide whether a
given polynomial is irreducible or reducible over F. For our purposes,
irreducible polynomials over F, are of particular interest. To determine all
monic irreducible polynomials over F, of fixed degree n, one may first
compute all monic reducible polynomials over F, of degree n and then
eliminate them from the set of monic polynomials in F,[x] of degree n. If p
or n is large, this method is not feasible, and we will develop more powerful
methods in Chapter 3, Sections 2 and 3.

1.60. Example. Find all irreducible polynomials over F, of degree 4 (note
that a nonzero polynomial in F,[x] is automatically monic). There are
2% =16 polynomials in F,[x] of degree 4. Such a polynomial is reducible
over F, if and only if it has a divisor of degree 1 or 2. Therefore, we
compute all” products (a,+a,x + a,x?> + x>)(by+ x) and (a,+a;x+
x*)(by+ byx + x?) with a,,b;€F, and obtain all reducible polynomials
over F, of degree 4. Comparison with the 16 polynomials of degree 4 leaves
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us with the irreducible polynomials f,(x)=x*+x + 1, f,(x)=x*+ x> +1,
H(x)=x*+x*+x2+ x+1inF,[x]. a

Since the irreducible polynomials over a field F are exactly the prime
elements of F[x], the following result, one part of which was already used in
Lemma 1.58, is an immediate consequence of Theorems 1.47(iv) and 1.54.

1.61. Theorem. For f € F[x], the residue class ring F[x]/(f) is a
field if and only if f is irreducible over F.

As a preparation for the next section, we shall take a closer look at
the structure of the residue class ring F[x]/(f), where f is an arbitrary
nonzero polynomial in F[x]. We recall that as a residue class ring F[x]/(f)
consists of residue classes g +(f) (also denoted by [g]) with ge& F[x],
where the operations are defined as in (1.2) and (1.3). Two residue classes
g+ (f) and h +(f) are identical precisely if g = hmod f —that is, precisely
if g — h is divisible by f. This is equivalent to the requirement that g and A
leave the same remainder after division by f. Each residue class g +(f)
contains a unique representative r € F[x] with deg(r) <deg(f), which is
simply the remainder in the division of g by f. The process of passing from g
to r is called reduction mod f. The uniqueness of r follows from the
observation that if r, € g +(f) with deg(r,) < deg( f), then » — r| is divisible
by f and deg(r — r|) < deg(f), which is only possible if r = r,. The distinct
residue classes comprising F[x]/(f) can now be described explicitly;
namely, they are exactly the residue classes » + ( f), where r runs through all
polynomials in F[x] with deg(r) < deg(f). Thus, if F=F, and deg(f)=n
> 0, then the number of elements of F,[x]/(f) is equal to the number of
polynomials in F,[x] of degree < n, which is p".

1.62. Examples

(i) Let f(x)=x€F,[x]. The p"=2" polynomials in F,[x] of
degree <1 determine all residue classes comprising F,[x]/(x).
Thus, F,[x]/(x) consists of the residue classes [0] and [1] and
is isomorphic to F,.

(i) Letf(x)=x%+ x+1€F,[x]. Then F,[x]/(f) has the p" =22
elements [0], [1], [x], [x +1]). The operation tables for this
residue class ring are obtained by performing the required
operations with the polynomials determining the residue classes
and by carrying out reduction mod f if necessary:

fo 0 D [k [x+]
O | 1 0] [x]  [x+1]
D1 | D1 [0l [x+1]  [x]
[x] | [x] [x+1] [0 [
| [x+1] [ 01 [0]
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| [0 [1] [x]  [x+1]
[o] | o] [o] [0] [0]
(1] | [o] [1] [x]  [x+1]
[x] ([0l [x] [x+1] [1]
[x+1]1 [0] [x+1]  [1] [x]

By inspecting these tables, or from the irreducibility of f over
F, and Theorem 1.61, it follows that F,[x]/( f) is a field. This
is our first example of a finite field for which the number of
elements is not a prime.

Let f(x) = x* +2 €F,[x]. Then F,[x]/(f) consists of the p" =
32 residue classes [0], [1], [2), [x], [x +1], [x +2], [2x], [2x +1],
[2x 4+2]. The operation tables for F;[x]/(f) are again pro-
duced by performing polynomial operations and using reduc-
tion mod f whenever necessary. Since F;[x]/( f) is a commuta-
tive ring, we only have to compute the entries on and above the

main diagonal.

+ o) 11 [2] [x) [x+1] [x+2] [2x] [2x+1] [2x+2]

[0] fo] [ I[2] [x] [x+1] [x+2] [2x] [2x+1] [2x+2]
1) [2] [0] [x+1] [x+2] [x] [2x+1] [2x+2] [2x]

[2] [1] [x+2] [x] [x+1] [2x+2] [2x] [2x+1]
[x] [2x]  [2x+1) [2x+2] [0] [n [2]
[x+1] [2x +2] [2x] [1] [2] [0]
[x+2] [2x +1] [2] [0] [1]

[2x) [x] [x+1] [x+2]
[2x +1] [x+2] [x]

[2x+2] [x+1]

. 01 11 [2) [x] [x+1] [x+2] [2x] [2x+1] [2x+2]
[0] [0] [o] [0] [o] [0] (o) [0] (0] [0]

[1 (17 [21 [x] [x+1] [x+2] [2x] [2x+1] [2x+2]

[2] [11 [2x] [2x+2] [2x+1] [x] [x+2] [x+1]

[x] 1 [x+1] [2x+1] [2] [x+2] [2x+2]

[x+1] [2x +2] [0] [2x +2] [0] [x+1]
[x+2] [x+2] [x+2] [2x+1] [0]

[2x] [1] [2x+1] [x+1]
[2x +1] [x+2] [0]

[2x +2] [2x +2]

Note that F;[x]/(f) is not a field (and not even an integral
domain). This is in accordance with Theorem 1.61 since x* +2

= (x + 1)(x +2) is reducible over F,.

0

If F is again an arbitrary field and f(x) € F[x], then replacement of
the indeterminate x in f(x) by a fixed element of F yields a well-defined
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element of F. In detail, if f(x)=a,+ax+ -+ +a,x" € F[x] and bE F,
then replacing x by b we get f(b)y=a,+a,b+ --- +a,b"€ F. In any
polynomial identity in F[x] we can substitute a fixed » € F for x and obtain
a valid identity in F ( principle of substitution).

1.63. Definition. An element b€ F is called a root (or a zero) of the
polynomial f € F[x] if f(b)=0.

An important connection between roots and divisibility is given by
the following theorem.

1.64. Theorem. An element b € F is a root of the polynomial f €
F[x] if and only if x — b divides f(x).

Proof. We use the division algorithm (see Theorem 1.52) to write
f(x)=q(x)(x — b)+ c with g € F[x] and ¢ € F. Substituting b for x, we get
f(b)=c, hence f(x)=q(x)(x—b)+ f(b). The theorem follows now from
this identity. m]

1.65. Definition. Let b € F be a root of the polynomial f € F[x]. If kis a
positive integer such that f(x) is divisible by (x — b)*, but not by (x — b)**!,
then k is called the multiplicity of b. If k =1, then b is called a simple root (or
a simple zero) of f, and if k > 2, then b is called a multiple root (or a multiple
zero) of f.

1.66. Theorem. Let f € F[x] with degf=n>0. If b,....b,€F
are distinct roots of f with multiplicities k,,...,k,,, respectively, then (x —

b)¥ - -+ (x — b, )*~ divides f(x). Consequently, k,+ - -- + k,, <n, and f can
have at most n distinct roots in F.

Proof. We note that each polynomial x — b, 1 < j < m, is irreduc-
ible over F, and so (x — bj)"l occurs as a factor in the canonical factoriza-
tion of f. Altogether, the factor (x — b,)*'---(x— b, )~ appears in the
canonical factorization of f and is thus a divisor of f. By comparing degrees,
wegetk + .- +k,<n, and m<k,+ --- +k, <n shows the last state-
ment. 0

1.67. Definition. If f(x)=a,+ax+a,x2+ ---+a,x"€ F[x], then
the derivative f’ of fis defined by f'= f'(x)=a, +2a,x+ -+ +na,x"" '€
Fix].

1.68. Theorem. The element b€ F is a multiple root of f € F[x] if
and only if it is a root of both f and f'.

There is a relation between the nonexistence of roots and irreducibil-
ity. If f is an irreducible polynomial in F[x] of degree.> 2, then Theorem
1.64 shows that f has no root in F. The converse holds for polynomials of
degree 2 or 3, but not necessarily for polynomials of higher degree.
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1.69. Theorem. The polynomial f € F[x] of degree 2 or 3 is irre-
ducible in F[x] if and only if f has no root in F.

Proof. The necessity of the condition was already noted. Con-
versely, if f has no root in F and were reducible in F[x], we could write
f=gh with g, h € F[x] and 1< deg(g)<deg(k). But deg(g)+deg(h)=
deg(f) <3, hence deg(g)=1; that is, g(x)=ax+ b with a,b€ F, a= 0.
Then — ba~! is a root of g, and so a root of fin F, a contradiction. 0

1.70. Example. Because of Theorem 1.69, the irreducible polynomials in
F,[x] of degree 2 or 3 can be obtained by eliminating the polynomials with
roots in F, from the set of all polynomials in F,[x] of degree 2 or 3. The
only irreducible polynomial in F,[x] of degree 2 is f(x)=x2+ x+1, and
the irreducible polynomials in F,[x] of degree 3 are f,(x)= x>+ x+1 and
H(x)=x>+x*+1. o

In elementary analysis there is a well-known method for constructing
a polynomial with real coefficients which assumes certain assigned values
for given values of the indeterminate. The same method carries over to any
field.

1.71. Theorem (Lagrange Interpolation Formula). For n >0, let
ag,...,a, be n+1 distinct elements of F, and let b,,...,b, be n +1 arbitrary
elements of F. Then there exists exactly one polynomial f € F[x] of degree

< n such that f(a;)= b, fori= s>, This polynomial is given by
f(x)= Z bkl—[ (a;— ak)_l(x_ak)'
i=0 =
ki

One can also consider polynomials in several indeterminates. Let R
denote a commutative ring with identity and let x,,...,x, be symbols that
will serve as indeterminates. We form the polynomial ring R{x,], then the
polynomial ring R[x,, x,]= R[x,][x,]), and so on, until we arrive at
R[x;,...,x,1=R[x},...,x,_Ix,]. The elements of R[x,,...,x,] are then
expressions of the form

f=f(xienx,) = 2a X0 Xy

with coefficients g, ...; € R, where the summation is extended over fmltely
many n-tuples (:l, : ») Of nonnegative mtegers and the convention x =1
(I<j<gn)is observed Such an expression is called a polynomial in x,,...,x,
over R Two polynomials f, g € R[x,,...,x,] are equal if and only if all
corresponding coefficients are equal. It is tacitly assumed that the inde-
terminates x,,...,x, commute with each other, so that, for instance, the
expressions x,x,x;x, and x,x,x;x, are identified.

1.72. Definition. Letf € R[x,,...,x,] be given by
f(xpseox,) = Zai,n-i,,x'i' X
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Ifa,. . =0, thena, . xj'- riscalled atermof fand i, + --- +i,is the
degree of the term. For f = 0 one defines the degree of f, denoted by deg( nH,
to be the maximum of the degrees of the terms of f. For f =0 one sets
deg(f)= —oo. If f=0 or if all terms of f have the same degree, then f is
called homogeneous.

Any f € R[x,,...,x,] can be written as a finite sum of homogeneous
polynomials. The degrees of polynomials in R[x,,...,x,] satisfy again the
inequalities in Theorem 1.50, and if R is an integral domain, then (1.4) is
valid and R[x,,...,x,] is an integral domain. If F is a field, then the
polynomials in F[x,,...,x,] of positive degree can again be factored uniquely
into a constant factor and a product of “monic” prime elements (using a
suitable definition of “monic”), but for n> 2 there is no analog of
the division algorithm (in the case of commuting indeterminates) and
F[x,,...,x,] is not a principal ideal domain,

An important special class of polynomials in » indeterminates is that
of symmetric polynomials.

1.73. Definition. A polynomial f € R[x,,...,x,] is called symmetric if
f(xiseoyx; )= f(xy,...,x,) for any permutation i,...,i, of the integers

n
U 3

1.74. Example. Let z be an indeterminate over R[x,,...,x,], and let
g(z)=(z—x,(z—x3)-+-(z— x,). Then

g(z)=z"—062""'+6,2" %+ --- +(=1)"g,

with
0, =0,(x),....,x,) = Y X, x, (k=12,...,n).
ISij< - <ig<n
Thus:
o=x+x,+ - +x,,
O=xX,+x X3+ - +x;x, + X3+ +x,x,+-- +x,_X,,

0,=XXy" " X,.

As g remains unaltered under any permutation of the x,, all the o, are
symmetric polynomials; they are also homogeneous. The polynomial g, =
6, (Xy,...,X,)E R[x,,...,x,] is called the kth elementary symmetric poly-
nomial in the indeterminates x,,...,x, over R. The adjective “‘elementary” is
used because of the so-called “fundamental theorem on symmetric poly-
nomials,” which states that for any symmetric polynomial f € R[x,,...,x,]
there exists a uniquely determined polynomial # € R[x,,...,x,] such that
f(xp,...,x,)=h(oy,...,0,). O

1.75. Theorem (Newton’s Formula). Let o,,...,0, be the elemen-
tary symmetric polynomials in x,,...,x, over R, and let sy=n€ Z and



