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Proof. Since the relation “a is conjugate to b” is an equivalence
relation on G, the distinct conjugacy classes in G form a partition of G.
Thus, |G| is equal to the sum of the numbers of elements of the distinct
conjugacy classes. There are |C| conjugacy classes (corresponding to the
elements of C) containing only one member, whereas #n,,n,,...,n, are
the numbers of elements of the remaining conjugacy classes. This yields the
class equation. To show that each #n; divides |G|, it suffices to note that n; is
the number of conjugates of some a € G and so equal to the number of left
cosets of G modulo N({a}) by Theorem 1.25. a

2. RINGS AND FIELDS

In most of the number systems used in elementary arithmetic there are two
distinct binary operations: addition and multiplication. Examples are pro-
vided by the integers, the rational numbers, and the real numbers. We now
define a type of algebraic structure known as a ring that shares some of the
basic properties of these number systems.

1.28. Definition. A ring (R, +,) is a set R, together with two binary
operations, denoted by + and -, such that:

1. R s an abelian group with respect to +.

2. - is associative—that is, (a:-b)-c=a-(b-c) for all a, b,c €ER.

3. The distributive laws hold; that is, for all a,b,c € R we have
a(bt+c)y=a-b+a-cand(b+c)a=b-a+c-a.

We shall use R as a designation for the ring (R, +, -) and stress that
the operations + and - are not necessarily the ordinary operations with
numbers. In following convention, we use 0 (called the zero element) to
denote the identity element of the abelian group R with respect to addition,
and the additive inverse of a is denoted by — a; also, a +(— b) is abbrevi-
ated by a — b. Instead of a-b we will usually write ab. As a consequence of
the definition of a ring one obtains the general property a0 = 0a = 0 for all
a € R. This, in turn, implies (—a)b=a(—b)= —ab for all a, b€ R.

The most natural example of a ring is perhaps the ring of ordinary
integers. If we examine the properties of this ring, we realize that it has
properties not enjoyed by rings in general. Thus, rings can be further
classified according to the following definitions.

1.29. Definition

(i) A ring is called a ring with identity if the ring has a multiplica-
tive identity—that is, if there is an element e such that ae = ea
=a forallae R.

(ii) A ring is called commutative if - is commutative.
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(iii) A ring is called an integral domain if it is a commutative ring
with identity e = 0 in which gb = 0 implies a=0 or b= 0.

(iv) A ring is called a division ring (or skew field) if the nonzero
elements of R form a group under -

(v) A commutative division ring is called a field.

Since our study is devoted to fields, we emphasize again the defini-
tion of this concept. In the first place, a field is a set F on which two binary
operations, called addition and multiplication, are defined and which con-
tains two distinguished elements 0 and e with 0 = e. Furthermore, F is an
abelian group with respect to addition having 0 as the identity element, and
the elements of F that are =0 form an abelian group with respect to
multiplication having e as the identity element. The two operations of
addition and multiplication are linked by the distributive law a(b + ¢) = ab
+ ac. The second distributive law (b + c)a = ba + ca follows automatically
from the commutativity of multiplication. The element 0 is called the zero
element and e is called the multiplicative identity element or simply the
identity. Later on, the identity will usually be denoted by 1.

The property appearing in Definition 1.29(iii)—namely, that ab=0
implies a=0 or b=0—is expressed by saying that there are no zero
divisors. In particular, a field has no zero divisors, for if ab =0 and a = 0,
then multiplication by a~! yields b=a~'0=0.

In order to give an indication of the generality of the concept of ring,
we present some examples.

1.30. Examples

(i) Let R be any abelian group with group operation +. Define

ab =0 for all a, b€ R; then R is a ring.

(i) The integers form an integral domain, but not a field.

(iii) The even integers form a commutative ring without identity.

(iv) The functions from the real numbers into the real numbers
form a commutative ring with identity under the definitions for
f+ g and fg given by (f + g)(x) = f(x)+g(x) and (fg)(x) =
f(x)g(x) for x eR.

(v) The set of all 2 X2 matrices with real numbers as entries forms
a noncommutative ring with identity with respect to matrix
addition and multiplication. O

We have seen above that a field is, in particular, an integral domain.
The converse is not true in general (see Example 1.30(ii)), but it will hold if
the structures contain only finitely many elements.

1.31. Theorem. Every finite integral domain is a field.

Proof. Let the elements of the finite integral domain R be
a,,a,,...,a, For a fixed nonzero element a € R, consider the products
aa,, aa,,...,aa,. These are distinct, for if aa, = aa;, then a(a, —a;) = 0, and
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since a = 0 we must have g, —a, =0, or a;, = a,. Thus each element of R is
of the form aa;, in particular, e = aa, for some i with 1<i<#n, where e
is the identity of R. Since R is commutative, we have also a,a = e, and so a;
is the multiplicative inverse of a. Thus the nonzero elements of R form a
commutative group, and R is a field. O

1.32. Definition. A subset S of a ring R is called a subring of R provided
S is closed under + and - and forms a ring under these operations.

1.33. Definition. A subsetJ of a ring R is called an ideal provided J is a
subring of R and for alla€ J and r € R we have ar € J and ra € J.

1.34. Examples

(i) Let R be the field @ of rational numbers. Then the set Z of
integers is a subring of @, but not an ideal since, for example,
1€Z,;€Q,but 3-1=3&17.

(ii)) Let R be a commutative ring, a € R, and let J = (ra: r € R},
then J is an ideal.

(iii) Let R be a commutative ring. Then the smallest ideal contain-
ing a given element a € R is the ideal (@)= (ra+ na:r €R,
n € Z). If R contains an identity, then (a@) = {(ra:r € R). a

1.35. Definition. Let R be a commutative ring. An ideal J of R is said to
be principal if there is an a € R such that J = (a). In this case, J is also
called the principal ideal generated by a.

Since ideals are normal subgroups of the additive group of a ring, it
follows immediately that an ideal J of the ring R defines a partition of R
into disjoint cosets, called residue classes modulo J. The residue class of the
element a of R modulo J will be denoted by [a] = a + J, since it consists of
all elements of R that are of the form a+ ¢ for some c € J. Elements
a, b € R are called congruent modulo J, written a = bmod J, if they are in
the same residue class modulo J, or equivalently, if a — b € J (compare with
Definition 1.4). One can verify that a = bmod J impliesa + r=b + rmod J,
ar = brmod J, and ra = rbmod J for any » € R and na = nbmod J for any
ne Z. If, in addition, r=smodJ, then a+r=b+smodJ and ar=
bsmod J.

It is shown by a straightforward argument that the set of residue
classes of a ring R modulo an ideal J forms a ring with respect to the
operations

(a+J)+(b+J)=(a+b)+J, (1.2)
(a+J)b+J)=ab+J. (1.3)

1.36. Definition. The ring of residue classes of the ring R modulo the
ideal J under the operations (1.2) and (1.3) is called the residue class ring (or
factor ring) of R modulo J and is denoted by R /J.



14 Algebraic Foundations

1.37. Example (The residue class ring Z /(n)). As in the case of groups
(compare with Definition 1.5), we denote the coset or residue class of the
integer ¢ modulo the positive integer n by [a], as well as by a +(n), where
(n) is the principal ideal generated by n. The elements of Z /(n) are

[0]=0+(n),[1]=1+(n),....,[n—1]=n—=1+(n). m

1.38. Theorem. Z/(p), the ring of residue classes of the integers
modulo the principal ideal generated by a prime p, is a field.

Proof. By Theorem 1.31 it suffices to show that Z/(p) is an
integral domain. Now [1] is an identity of Z /( p), and [a][b] = [ab] = [0] if
and only if ab = kp for some integer k. But since p is prime, p divides ab if
and only if p divides at least one of the factors. Therefore, either [a] = [0] or
[b] = [0], so that Z /( p) contains no zero divisors. 0O

1.39. Example. Let p=3. Then Z/(p) consists of the elements [0], 1],
and [2]. The operations in this field can be described by operation tables
that are similar to Cayley tables for finite groups (see Example 1.7):

cllol 1 - |l D1 [
[o]| [o] [1] [2] [o]| [o] [o] f[o]
(11} (11 [2] [o]  [1]] [o] [1] [2]
[2]1 [2] [o] (1]  [2]i[o] [2] [1] o

The residue class fields Z /( p) are our first examples of finite fields
—that is, of fields that contain only finitely many elements. The general
theory of such fields will be developed later on.

The reader is cautioned not to assume that in the formation of
residue class rings all the properties of the original ring will be preserved in
all cases. For example, the lack of zero divisors is not always preserved, as
may be seen by considering the ring Z /(n), where n is a composite integer.

There is an obvious extension from groups to rings of the definition
of a homomorphism. A mapping ¢: R — § from a ring R into a ring S is
called a homomorphism if for any a, b € R we have

¢(a+b)=¢(a)+o(b) and ¢(ab)=o¢(a)e(b).
Thus a homomorphism ¢: R — § preserves both operations + and - of R

and induces a homomorphism of the additive group of R into the additive
group of S. The set

kerp={a€R:p(a)=0€S)

is called the kernel of ¢. Other concepts, such as that of an isomorphism, are
analogous to those in Definition 1.16. The homomorphism theorem for
rings, similar to Theorem 1.23 for groups, runs as follows.

1.40. Theorem (Homomorphism Theorem for Rings). If ¢ is a
homomorphism of a ving R onto a ring S, then ker ¢ is an ideal of R and S is
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isomorphic to the factor ving R /ker @. Conversely, if J is an ideal of the ring
R, then the mapping ¥: R - R /J defined by Y(a)=a+J for a€ R is a
homomorphism of R onto R /J with kernel J.

Mappings can be used to transfer a structure from an algebraic
system to a set without structure. For instance, let R be a ring and let p be a
one-to-one and onto mapping from R to a set S; then by means of ¢ one
can define a ring structure on S that converts ¢ into an isomorphism. In
detail, let s; and s, be two elements of S and let r, and », be the elements of
R uniquely determined by ¢(#)=s, and ¢@(r,)=s,. Then one defines
5, + 5, to be @(r, +7,) and 5,5, to be @(r,r,), and all the desired properties
are satisfied. This structure on S may be called the ring structure induced by
¢. In case R has additional properties, such as being an integral domain or a
field, then these properties are inherited by S. We use this principle in order
to arrive at a more convenient representation for the finite fields Z /( p).

141. Definition. For a prime p, let F, be the set {0,1,....,p—1} of
integers and let ¢:Z /(p) —F, be the mapping defined by ¢([a])=a for
a=0,1,...,p—1. Then F,, endowed with the field structure induced by ¢, is
a finite field, called the Galois field of order p.

By what we have said before, the mapping ¢:Z /(p) —F, is then an
isomorphism, so that ¢([a]+[b]) = o([a])+ ¢([b]) and e¢([(a][b]) =
o([al)e([b]). The finite field F, has zero element 0, identity 1, and its
structure is exactly the structure of Z /( p). Computing with elements of F
therefore means ordinary arithmetic of integers with reduction modulo p.

1.42. Examples

(i) Consider Z /(5), isomorphic to Fs={0,1,2,3,4}, with the iso-
morphism given by: [0]—=0, [1]—=1, [2]= 2, [3]—3, [4]—> 4.
The tables for the two operations + and - for elements in F;
are as follows:

+]0 1 2 3 4 -]0 1 2 3 4
0[]0 T 2 3 4 0[0 0 0 0 0
{1 23 40 1[0 1 2 3 4
2012 3 401 2(0 2 4 1 3
33 401 2 3/0 3 1 4 2
4la 01 23 alo 4 3 21

(ii) An even simpler and more important example is the finite field
F,. The elements of this field of order two are 0 and 1, and the
operation tables have the following form:

+]0 1 1o 1
0|01 oloo
111 0 110 1

In this context, the elements 0 and 1 are called binary elements. 0
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If b is any nonzero element of the ring Z of integers, then the
additive order of b is infinite; that is, nb = 0 implies » = 0. However, in the
ring Z /( p), p prime, the additive order of every nonzero element b is p; that
is, pb=10, and p is the least positive integer for which this holds. It is of
interest to formalize this property.

1.43. Definition. If R is an arbitrary ring and there exists a positive
integer n such that nr =0 for every r €RR, then the least such positive
integer n is called the characteristic of R and R is said to have (positive)
characteristic ». If no such positive integer »n exists, R is said to have
characteristic 0.

1.44. Theorem. A ring R = (0} of positive characteristic having an
identity and no zero divisors must have prime characteristic.

Proof. Since R contains nonzero elements, R has characteristic
n > 2. If n were not prime, we could write n=km with k, meZ, 1<k, m
< n. Then 0 = ne = (km)e = (ke)(me), and this implies that either ke =0
or me = 0 since R has no zero divisors. It follows that either kr = (ke)r =0
for all r€ R or mr=(me)r=20 for all r € R, in contradiction to the
definition of the characteristic n. 0O

1.45. Corollary. A finite field has prime characteristic.

Proof. By Theorem 1.44 it suffices to show that a finite field F has a
positive characteristic. Consider the multiples e,2e,3e,... of the identity.
Since F contains only finitely many distinct elements, there exist integers k
and m with 1< k < m such that ke = me, or (m—k)e =0, and so F has a
positive characteristic. O

The finite field Z /( p) (or, equivalently, F,) obviously has character-
istic p, whereas the ring Z of integers and the field Q of rational numbers
have characteristic 0. We note that in a ring R of characteristic 2 we have
2a=a+a=0, hence a= —a for all a € R. A useful property of commuta-
tive rings of prime characteristic is the following.

1.46. Theorem. Let R be a commutative ring of prime characteristic
p- Then

(a+b)"" =a”+b"" and (a—b)" =a?" —b"
fora,b€E R and n €N,
Proof. We use the fact that

PA\_pp=1)---(p—i+l)
(i)= 1.2...._,-' = Omod p

for all i € Z with 0 <i < p, which follows from (?) being an integer and the
observation that the factor p in the numerator cannot be cancelled. Then by
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the binomial theorem (see Exercise 1.8),

p

(a+b)p=a”+(ll))a”_'b+ +(p_l)ab”"+b”=a”+bp.
and induction on n completes the proof of the first identity. By what we

have shown, we get
a”"=((a—b)+b)" =(a-b)" +b"",
and the second identity follows. O

Next we will show for the case of commutative rings with identity
which ideals give rise to factor rings that are integral domains or fields. For
this we need some definitions ffom ring theory.

Let R be a commutative ring with identity. An element a € R is
called a divisor of b € R if there exists ¢ € R such that ac = b. A unit of R is
a divisor of the identity; two elements a, b € R are said to be associates if
there is a unit £ of R such that a = be. An element ¢ € R is called a prime
element if it is no unit and if it has only the units of R and the associates of
¢ as divisors. An ideal P = R of the ring R is called a prime ideal if for
a,be Rwehaveabe Ponlyifeitherac€c Porbe P. Anideal M = Rof R
is called a maximal ideal of R if for any ideal J of R the property M C J
implies J =R or J= M. Furthermore, R is said to be a principal ideal
domain if R is an integral domain and if every ideal J of R is principal—that
is, if there is a generating element a for J such that J= (a)=(ra: r € R}.

1.47. Theorem. Let R be a commutative ring with identity. Then:

(i) Anideal M of R is a maximal ideal if and only if R /M is a field.
(ii) An ideal P of R is a prime ideal if and only if R /P is an integral
domain.
(i) Every maximal ideal of R is a prime ideal.
(iv) If R is a principal ideal domain, then R /(c) is a field if and only
if ¢ is a prime element of R.

Proof.

(i) Let M be a maximal ideal of R. Then for a € M, a € R, the set
J={ar+m:r€ R, me M} is an ideal of R properly containing
M, and therefore J= R. In particular, ar + m=1 for some
suitable r € R, m € M, where | denotes the multiplicative iden-
tity element of R. In other words, if a+ M =0+ M is an
element of R /M different from the zero element in R /M, then
it possesses a multiplicative inverse, because (a + M)(r + M) =
ar+ M= (l—m)+ M =1+ M. Therefore, R /M is a field. Con-
versely, let R /M be a field and let J D M, J = M, be an ideal of
R. Then for a€ J, a & M, the residue class a + M has a multi-
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plicative inverse, so that (a+ M)}(r + M)=1+ M for some r €
R. This implies ar + m =1 for some m € M. Since J is an ideal,
we have 1 € J and therefore (1)= R C J, hence J = R. Thus M is
a maximal ideal of R.

(ii) Let P be a prime ideal of R; then R /P is a commutative ring
with identity 1+ P =0+ P. Let (a+ P)(b+ P)=0+ P, hence
ab € P. Since P is a prime ideal, either a € P or b € P; that is,
eithera+ P=0+ P or b+ P=0+ P. Thus, R/P has no zero
divisors and is therefore an integral domain. The converse
follows immediately by reversing the steps of this proof.

(iii) This follows from (i) and (ii) since every field is an integral
domain.

(iv) Let c€R. If ¢ is a unit, then (¢)= R and the ring R /(c)
consists only of one element and is no field. If ¢ is neither a unit
nor a prime element, then ¢ has a divisor @ € R that is neither a
unit nor an associate of ¢. We note that a = 0, for if a =0, then
¢ =0 and a would be an associate of ¢c. We can write ¢ = ab with
b € R. Next we claim that a & (¢). For otherwise a = ¢d = abd
for some d € R, or a(1 — bd)= 0. Since a = 0, this would imply
bd =1, so that d would be a unit, which contradicts the fact that
a is not an associate of c. It follows that (¢) € (a) € R, where all
containments are proper, and so R /(c¢) cannot be a field be-
cause of (i). Finally, we are left with the case where ¢ is a prime
element. Then (¢) = R since ¢ is no unit. Furthermore, if J 2 (¢)
is an ideal of R, then J=(a) for some a€ R since R is a
principal ideal domain. It follows that ¢ € (a), and so a is a
divisor of c. Consequently, a is either a unit or an associate of ¢,
so that either / = R or J = (¢). This shows that (¢) is a maximal
ideal of R. Hence R /(c) is a field by (i). O

As an application of this theorem, let us consider the case R =Z. We
note that Z is a principal ideal domain since the additive subgroups of Z are
already generated by a single element because of Theorem 1.15(%1). A prime
number p fits the definition of a prime element, and so Theorem 1.47(iv)
yields another proof of the known result that Z/(p) is a field. Conse-
quently, ( p) is a maximal ideal and a prime ideal of Z. For a composite
integer n, the ideal (n) is not a prime ideal of Z, and so Z /(n) is not even
an integral domain. Other applications will follow in the next section when
we consider residue class rings of polynomial rings over fields.

3. POLYNOMIALS

In elementary algebra one regards a polynomial as an expression of the
form ay+ a;x+ --- +a,x". The a,’s are called coefficients and are usually



