2 Algebraic Foundations

1. GROUPS

In the set of all integers the two operations addition and multiplication are
well known. We can generalize the concept of operation to arbitrary sets.
Let S be a set and let S X S denote the set of all ordered pairs (s, ¢t) with
s€ S, t€S. Then a mapping from S X § into S will be called a (binary)
operation on S. Under this definition we require that the image of (s,7) €
S X S must be in S; this is the closure property of an operation. By an
algebraic structure or algebraic system we mean a set S together with one or
more operations on S.

In elementary arithmetic we are provided with two operations,
addition and multiplication,sthat have associativity as one of their most
important properties. Of the various possible algebraic systems having a
single associative operation, the type known as a group has been by far the
most extensively studied and developed. The theory of groups is one of the
oldest parts of abstract algebra as well as one particularly rich in applica-
tions.

1.1. Definition. A group is a set G together with a binary operation * on
G such that the following three properties hold:

1. = is associative; that is, for any a, b, c €G,
a*(bsc)=(asxb)*c.

2. There is an identity (or unity) element e in G such that for all
acsgq,
a*e=e*xa=a.
3. For each a € G, there exists an inverse element a~' € G such that

a*a =a xa=e.
If the group also satisfies

4. Foralla,beg,
a»b=bxg,
then the group is called abelian (or commutative).

It is easily shown that the identity element e and the inverse element
a”! of a given element a € G are uniquely determined by the properties
above. Furthermore, (a*b)~'=5b"'%qg~! for all a, b€ G. For simplicity,
we shall frequently use the notation of ordinary multiplication to designate
the operation in the group, writing simply ab instead of a * b. But it must be
emphasized that by doing so we do not assume that the operation actually is
ordinary multiplication. Sometimes it is also convenient to write a + b
instead of a * b and — a instead of a™!, but this additive notation is usually
reserved for abelian groups.
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The associative law guarantees that expressions such as a,a,---a,
with aj.eG, 1< j < n, are unambiguous, since no matter how we insert
parentheses, the expression will always represent the same element of G. To
indicate the n-fold composite of an element g € G with itself, where n €N,
we shall write

a"=aa---a (nfactorsa)

if using multiplicative notation, and we call a” the nth power of a. If using
additive notation for the operation * on G, we write

na=a+a+---+a  (nsummandsa).

Following customary notation, we have the following rules:

Multiplicative Notation Additive Notation
a™"=(a"')" (=n)ya=n(—a)
aam=q""" na+ma=(n+m)a
(a")y" =a"" m(na)=(mn)a
0

For n=0€Z, one adopts the convention a”=e¢ in the multiplicative
notation and 0a =0 in the additive notation, where the last “zero” repre-
sents the identity element of G.

1.2. Examples

(i) Let G be the set of integers with the operation of addition. The
ordinary sum of two integers is a unique integer and the
associativity is a familiar fact. The identity element is O (zero),
and the inverse of an integer a is the integer — a. We denote
this group by Z.

(i) The set consisting of a single element e, with the operation *
defined by e * e = ¢, forms a group.

(iii) Let G be the set of remainders of all the integers on division by
6—that is, G=1{0,1,2,3,4,5)—and let a * b be the remainder
on division by 6 of the ordinary sum of a and b. The existence
of an identity element and of inverses is again obvious. In this
case, it requires some computation to establish the associativity
of *. This group can be readily generalized by replacing the
integer 6 by any positive integer 7. O

These examples lead to an interesting class of groups in which every
element is a power of some fixed element of the group. If the group
operation is written as addition, we refer to “multiple” instead of “power”
of an element.

1.3. Definition. A multiplicative group G is said to be c¢yclic if there is an
element a € G such that for any b € G there is some integer j with b =a’.
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Such an element a is called a generator of the cyclic group, and we write
G={(a).

It follows at once from the definition that every cyclic group is
commutative. We also note that a cyclic group may very well have more
than one element that is a generator of the group. For instance, in the
additive group Z both 1 and — 1 are generators.

With regard to the “additive” group of remainders of the integers on
division by 7, the generalization of Example 1.2(iii), we find that the type of
operation used there leads to an equivalence relation on the set of integers.
In general, a subset R of S X § is called an equivalence relation on a set S if
it has the following three properties:

(@) (s,s)E R for all s € S (reflexivity).
(b) If (s,¢) €R, then (¢, s) € R (symmerry).
(c) If (s, 1), (t,u) € R, then (s, u) < R (transitivity).

The most obvious example of an equivalence relation is that of equality. It is
an important fact that an equivalence relation R on a set S induces a
partition of S—that is, a representation of S as the union of nonempty,
mutually disjoint subsets of S. If we collect all elements of S equivalent to a
fixed s € S, we obtain the equivalence class of s, denoted by

[s]=(tsS:(s,1)ER).
The collection of all distinct equivalence classes forms then the desired

partition of S. We note that [s] = [¢] precisely if (s, ¢) € R. Example 1.2(iii)
suggests the following concept.

1.4. Definition. For arbitrary integers a, b and a positive integer n, we
say that a is congruent to b modulo n, and write a=bmodn, if the
difference a — b is a multiple of n —that is, if a = b + kn for some integer k.

It is easily verified that “congruence modulo #” is an equivalence
relation on the set Z of integers. The relation is obviously reflexive and
symmetric. The transitivity also follows easily: if a=b+ kn and b=c+In
for some integers k and /, then a= ¢ +(k + /)n, so that a= bmod n and
b = cmod n together imply a = cmod n.

Consider now the equivalence classes into which the relation of
congruence modulo # partitions the set Z. These will be the sets

[0]={...,—2n,-n,0,n,2n,...},
[M=(.,-2n+1,—n+1,1,n+1,2n+1,...},

[n=1]=(.,-n-1,-1,n=-1,2n-1,3n—1,...}.

We may define on the set {[0],[1],...,[n — 1]} of equivalence classes a binary
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operation (which we shall again write as +, although it is certainly not
ordinary addition) by

[a]+[b]=[a+5], (1.1)

where a and b are any elements of the respective sets [a] and [b] and the
sum a + b on the right is the ordinary sum of a and b. In order to show that
we have actually defined an operation—that is, that this operation is well
defined—we must verify that the image element of the pair ([a],[b]) is
uniquely determined by [a] and [b] alone and does not depend in any way
on the representatives @ and b. We leave this proof as an exercise. Associa-
tivity of the operation in (1.1) follows from the associativity of ordinary
addition. The identity element is [0] and the inverse of [a] is [ — a]. Thus the
elements of the set ([0},[1],...,[# — 1]} form a group.

1.5. Definition. The group formed by the set {[0],[1],...,[n — 1]} of equiv-
alence classes modulo n with the operation (1.1) is called the group of
integers modulo n and denoted by Z .

Z, is actually a cyclic group with the equivalence class [1] as a
generator, and it is a group of order » according to the following definition.

1.6. Definition. A group is called finite (resp. infinite) if it contains
finitely (resp. infinitely) many elements. The number of elements in a finite
group is called its order. We shall write |G| for the order of the finite
group G.

There is a convenient way of presenting a finite group. A table
displaying the group operation, nowadays referred to as a Cayley table, is
constructed by indexing the rows and the columns of the table by the group
elements. The element appearing in the row indexed by a and the column
indexed by 4 is then taken to be ab.

1.7. Example. The Cayley table for the group Z is:

+ (0] [ [2] [3] [4] I[5]

[ol{ [0] [1] [21 (31 [4] I[5]

(1| 0l 21 31 (41 (51 [o]

(21| (2] [3] T[4 [5]1 [o] [1]

[31] 381 [41 (5] [o] [1] [2]

(41 [41 (51 [o] [1] [2] I[3]

(511051 [0} [1] [2] [3] [4] o
A group G contains certain subsets that form groups in their own

right under the operation of G. For instance, the subset {[0],[2],[4]) of Z is
easily seen to have this property.
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1.8. Definition. A subset H of the group G is a subgroup of G if H is itself
a group with respect to the operation of G. Subgroups of G other than the
trivial subgroups {€) and G itself are called nontrivial subgroups of G.

One verifies at once that for any fixed a in a group G, the set of all
powers of a is a subgroup of G.

1.9. Definition. The subgroup of G consisting of all powers of the ele-
ment a of G is called the subgroup generated by a and is denoted by (a).
This subgroup is necessarily cyclic. If {(a) is finite, then its order is called
the order of the element a. Otherwise, a is called an element of infinite order.

Thus, a is of finite order k if k is the least positive integer such that
a* = e. Any other integer m with a™ = e is then a multiple of k. If S is a
nonempty subset of a group G, then the subgroup H of G consisting of all
finite products of powers of elements of § is called the subgroup generated
by S, denoted by H = (S). If (§) = G, we say that S generates G, or that G
is generated by S.

For a positive element n of the additive group Z of integers, the
subgroup (n) is closely associated with the notion of congruence modulo 7,
since a = bmod n if and only if a — b € (n). Thus the subgroup {(n) defines
an equivalence relation on Z. This situation can be generalized as follows.

1.10. Theorem. If H is a subgroup of G, then the relation R ;; on G
defined by (a, b) € Ry if and only if a = bh for some h € H, is an equivalence
relation.

The proof is immediate. The equivalence relation R, is called left
congruence modulo H. Like any equivalence relation, it induces a partition
of G into nonempty, mutually disjoint subsets. These subsets ( = equivalence
classes) are called the left cosets of G modulo H and they are denoted by

aH={ah: he H)

(ora+ H={a+h:he H) if G is written additively), where a is a fixed
element of G. Similarly, there is a decomposition of G into right cosets
modulo H, which have the form Ha = (ha: h € H)}. If G is abelian, then the
distinction between left and right cosets modulo H is unnecessary.

1.11. Example. Let G=1Z, and let H be the subgroup {(0],[3],[6],[9]}.
Then the distinct (left) cosets of G modulo H are given by:

[0]+ H = {[0].[3].[6].[9D},
[1]+H={[1],[4].[7].[10]},
[2]+ # = ([2].[5].[8].[11]). o

1.12. Theorem. If H is a finite subgroup of G, then every (left or
rvight) coset of G modulo H has the same number of elements as H.
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1.13. Definition. If the subgroup H of G only yields finitely many
distinct left cosets of G modulo H, then the number of such cosets is called
the index of H in G.

Since the left cosets of G modulo H form a partition of G, Theorem
1.12 implies the following important result,

1.14. Theorem. The order of a finite group G is equal to the product
of the order of any subgroup H and the index of H in G. In particular, the
order of H divides the order of G and the order of any element a € G divides
the order of G.

The subgroups and the orders of elements are easy to describe for
cyclic groups. We summarize the relevant facts in the subsequent theorem.

1.15. Theorem

(i) Every subgroup of a cyclic group is cyclic.

(ii) In a finite cyclic group {a) of order m, the element a* generates a
subgroup of order m /gcd(k, m), where gcd(k, m) denotes the
greatest common divisor of k and m.

(iii) If d is a positive divisor of the order m of a finite cyclic group {a),
then {a) contains one and only one subgroup of index d. For any
positive divisor f of m, {a) contains precisely one subgroup of
order f.

(iv) Let f be a positive divisor of the order of a finite cyclic group (a).
Then {a) contains ¢( f) elements of order f. Here (f) is Euler’s
function and indicates the number of integers n with 1< n< f
that are relatively prime to f.

(v) A finite cyclic group {a) of order m contains ¢(m)
generators — that is, elements a” such that {a") = (a). The gen-
erators are the powers a” with gcd(r, m)=1.

Proof. (i) Let H be a subgroup of the cyclic group {(a) with
H = (e). If a” € H, then a~" € H; hence H contains at least one power of a
with a positive exponent. Let 4 be the least positive exponent such that
a’ € H, and let a* € H. Dividing s by d gives s=qgd +r, 0<r <d, and
q,r€Z. Thus a*(a”9)9=a’" € H, which contradicts the minimality of d,
unless r = 0. Therefore the exponents of all powers of a that belong to H are
divisible by d, and so H = (a“).

(i) Put d=gcd(k,m). The order of (a*) is the least positive
integer # such that a*” = e. The latter identity holds if and only if m divides
kn, or equivalently, if and only if m /d divides n. The least positive n with
this property isn =m/d.

(iii) If d is given, then (a“) is a subgroup of order m/d, and so of
index d, because of (ii). If (a*) is another subgroup of index d, then its
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order is m /d, and so d = ged(k, m) by (ii). In particular, 4 divides k, so that
a* € (a?) and (a*) is a subgroup of (a?). But since both groups have the
same order, they are identical. The second part follows immediately because
the subgroups of order f are precisely the subgroups of index m /f.

(iv) Let |{a)|=m and m = df. By (ii), an element a* is of order fif
and only if gcd(k, m) = d. Hence, the number of elements of order f is equal
to the number of integers k with 1 < k < m and gcd(k, m)=d. We may
write k = dh with 1 < h < f, the condition gcd(k, m) = d being now equiva-
lent to gcd( A, f)=1. The number of these % is equal to ¢(f).

(v) The generators of (a) are precisely the elements of order m, so
that the first part is implied by (iv). The second part follows from (ii). O

When comparing the structures of two groups, mappings between the
groups that preserve the operations play an important role.

1.16. Definition. A mapping f: G — H of the group G into the group H is
called a homomorphism of G into H if f preserves the operation of G. That is,
if » and - are the operations of G and H, respectively, then f preserves the
operation of G if for all a,b€ G we have f(a*b)= f(a) f(b). If, in
addition, f is onto H, then f is called an epimorphism (or homomorphism
“onto”) and H is a homomorphic image of G. A homomorphism of G into G
is called an endomorphism. If f is a one-to-one homomorphism of G onto H,
then f is called an isomorphism and we say that G and H are isomorphic. An
isomorphism of G onto G is called an automorphism.

Consider, for instance, the mapping f of the additive group Z of the
integers onto the group Z , of the integers modulo n, defined by f(a) =[a].
Then

fla+b)=[a+b]=[al+[b]=f(a)+f(b) fora,belZ,

and f is a homomorphism.

If f: G —» H is a homomorphism and e is the identity element in G,
then ee = e implies f(e)f(e)= f(e), so that f(e)= ¢’, the identity element
in H. Fromaa™'=e we get f(a )= (f(a))" ' forallaeq.

The automorphisms of a group G are often of particular interest,
partly because they themselves form a group with respect to the usual
composition of mappings, as can be easily verified. Important examples of
automorphisms are the inner automorphisms. For fixed a € G, define f, by
f,(b)=aba"! for b €G. Then f, is an automorphism of G of the indicated
type, and we get all inner automorphisms of G by letting a run through all
elements of G. The elements b and aba ™! are said to be conjugate, and for a
nonempty subset S of G the set aSa~! = (asa™': s € S) is called a conjugate
of S. Thus, the conjugates of S are just the images of S under the various
inner automorphisms of G.
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1.17. Definition. The kernel of the homomorphism f: G = H of the group
G into the group H is the set

kerf={a€G: f(a)=¢"),
where e’ is the identity element in H.

1.18. Example. For the homomorphism f:Z - Z, given by f(a)=|[al,
ker f consists of all a € Z with [a]=[0]. Since this condition holds exactly
for all multiples a of n, we have ker f = (n), the subgroup of Z generated
by n. a

It is easily checked that kerf is always a subgroup of G. More-
over, kerf has a special property: whenever a € G and b € kerf, then
aba~' € ker f. This leads to the following concept.

1.19. Definition. The subgroup H of the group G is called a normal
subgroup of Gif aha~'€ HforallasGand all h€ H.

Every subgroup of an abelian group is normal since we then have

aha '= aa™'h = eh = h. We shall state some alternative characterizations of
the property of normality of a subgroup.
1.20. Theorem

(i) The subgroup H of G is normal if and only if H is equal 10 its
conjugates, or equivalently, if and only if H is invariant under all
the inner automorphisms of G.
(i) The subgroup H of G is normal if and only if the left coset aH is
equal to the right coset Ha for every a€G.

One important feature of a normal subgroup is the fact that the set
of its (left) cosets can be endowed with a group structure.

1.21. Theorem. If H is a normal subgroup of G, then the set of (left)
cosets of G modulo H forms a group with respect to the operation (aH)(bH) =
(ab)H.

1.22. Definition. For a normal subgroup H of G, the group formed by
the (left) cosets of G modulo A under the operation in Theorem 1.21 is
called the factor group (or quotient group) of G modulo H and denoted by
G/H.

If G/H is finite, then its order is equal to the index of H in G. Thus,
by Theorem 1.14, we get for a finite group G,

. 161
G/H|=—-.
G/HI= 15,
Each normal subgroup of a group G determines in a natural way a
homomorphism of G and vice versa.
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1.23. Theorem (Homomorphism Theorem). Let f: G — f(G)=G,
be a homomorphism of a group G onto a group G,. Then ket f is a normal
subgroup of G, and the group G, is isomorphic to the factor group G /ker f.
Conversely, if H is any normal subgroup of G, then the mapping Y. G - G/H
defined by Y (a)=aH for a € G is a homomorphism of G onto G/H with
kery = H.

We shall now derive a relation known as the class equation for a
finite group, which will be needed in Chapter 2, Section 6.

1.24. Definition. Let S be a nonempty subset of a group G. The normal-
izer of S in G is the set N(S)={(a€G:aSa " '=S).

1.25. Theorem. For any nonempty subset S of the group G, N(S) is
a subgroup of G and there is a one-to-one correspondence between the left
cosets of G modulo N(S) and the distinct conjugates aSa™"' of S.

Proof. We have e € N(S), and if a, b € N(S), then a~! and ab are
also in N(S), so that N(S) is a subgroup of G. Now

aSa~'=bSb~'= S=a"'bSb~'a=(a~'b)S(a"'p)""
«=a"'beN(S)=beaN(S).

Thus, conjugates of S are equal if and only if they are defined by elements
in the same left coset of G modulo N(S), and so the second part of the
theorem is shown. O

If we collect all elements conjugate to a fixed element @, we obtain a
set called the conjugacy class of a. For certain elements the corresponding
conjugacy class has only one member, and this will happen precisely for the
elements of the center of the group.

1.26. Definition. For any group G, the center of G is defined as the set
C={c€G:ac=cafor all a€G).

It is straightforward to check that the center C is a normal subgroup
of G. Clearly, G is abelian if and only if C = G. A counting argument leads
to the following result.

1.27. Theorem (Class Equation). Let G be a finite group with
center C. Then

k
IGI=1C1+ X n,,
i=1
where each n; is >2 and a divisor of |G|. In fact, n,, n,,...,n, are the
numbers of elements of the distinct conjugacy classes in G containing more than
one member.



