
��

��

��

��

��

��

��

Automata Theory��
��

��������	���
��
���

�����	�������	���
��

�����������
��

��

���������	
������
��

��

��

iq.edu.uomustansiriyah.www

com.mustansiriya.www��

��

��

��

��

hassan.kassim@yahoo.com

 Theory of Computation 1 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Instructor: Hassan Kassim Mohammad
Theory of computation is the theoretical study of capabilities and limitations of Computers (Theoretical
models of computation).

Objectives:

Providing students with:
o an understanding of basic concepts in the theory of computation through simple models of

computational devices.
o apply models in practice to solving problems in diverse areas such as string searching, pattern

matching, cryptography, and language design;
o understand the limitations of computing, the relative power of formal languages and the inherent

complexity of many computational problems.
o be familiar with standard tools and notation for formal reasoning about machines and programs.

REFERENCES:
1. Introduction to Computer Theory 2nd Edition

Daniel I. A. Cohen John Wiley & Sons, Inc 1997. ISBN 0-471-13772-3
2. Introduction to Automata Theory, Languages, and Computation, 2/E,

John E. Hopcroft, Rajeev Motwani, Jeffrey D.Ullman, Addison-Wesley 2001. ISBN 0-201-44124-1.

Units: 6

Grading Policy

Semester Exam Attendance Assignments & Quizzes Total

1st semester 10 2 3 15

2nd semester 10 2 3 15

Final 70 - - 70

Notes

Student must attend at least 80% of total classes to pass the course.
Any kind of cheating/plagiarism may result in a Fail grade in the course.
No labs. But you should write some programs with any language you may know.
There will be about 30 lectures 100 minutes each.
Late homework submissions will be penalized

Office Hours

Sunday, Monday, Tuesday, Wednesday

Contact Information

Office: computer science dept. room no. 67
 E-mail: hassan.kassim@yahoo.com

 Theory of Computation 2 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Syllabus

Week Date Subject Chapter
�� Introduction, terminology, definitions 1

�� Sets and operations 1

�� languages 2

�� Regular Expressions RE 4

�� Finite Automata FA 5

�� Deterministic Finite Automaton DFA 5

�� Non Deterministic Finite Automaton NDFA 8

	� Language Accepted by Finite Automata 5

� Convert Regular Expression into NFA

��� Constructing regular expression from Finite Automata

��� Finite Automata with Epsilon moves

��� Moore and Mealy machines 9

��� Converting between Moore and Mealy machine

��� Pumping lemma for regular languages

��� Kleene's Theorem 7

��� Regular Grammar 10

��� Myhill-Nerode Theorem Minimization of DFA

� EXAM

�	� Context-free Languages 13

�
� Pushdown Automata 17

��� CFG/CFL to PDA 18

��� PDA to CFG/CFL

��� CFG derivation trees Parsing 22

��� Chomsky normal form 16

��� Greibach normal form 16

��� Ambiguous CFL's

� EXAM

��� TURING MACHINES TM 24

��� COMPUTABILITY and COMPLEXITY

�	� Unsolvable Problems

�
� Time Complexity

��� CYK algorithm for CFG's

��� CFL pumping lemma and properties

��� Church Turing Thesis

 Theory of Computation 3 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

As a computer IT, you must study the following:
��1- Automata and formal language.
 Which answers - What are computers (Or what are models of computers)
2- Compatibility.
 Which answers - What can be computed by computers?
3- Complexity.
 Which answers - What can be efficiently computed?
In automata we will simulates parts of computers. Or we will make mathematical models of computers
Automata are more powerful than any real computer because we can design any machine on papers that can
do everything we want.

Theory of computation is the theoretical study of capabilities and limitations of Computers
(Theoretical models of computation).

Sets
Let A, B, and C be subsets of the universal set U

Distributive properties

A (B U C) (A B) U (A C

A U (B C) (A U B) (A U C

Idempotent properties

A A A,

A U A A.

Double Complement property

(A
�

)
�

A.

De Morgan’s laws

(A U B)
�

A
�

B
�

(A B)
�

A
�

U B
�

Commutative properties

A B B A,

A U B B U A.

 Associative laws

A (B C) (A B) C

A U (B U C) (A U B) U C

 Identity properties

A U � A,

A U A.

Complement properties

A U A
�

U,

A A
�

�.

 Theory of Computation 4 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Language

language is the set of all strings of terminal symbols derivable from alphabet.

alphabet is a finite set of symbols. For example {0, 1} is an alphabet with two symbols, {a, b} is another
alphabet with two symbols and English alphabet is also an alphabet. A string (also called a word) is a finite
sequence of symbols of an alphabet. b, a and aabab are examples of string over alphabet {a, b} and 0, 10
and 001 are examples of string over alphabet {0, 1}, A null string is a string with no symbols, usually
denoted by epsilon or lambda (�). A language is a set of strings over an alphabet. Thus {a, ab, baa} is a
language (over alphabert {a,b}) and {0, 111} is a language (over alphabet {0,1}). The number of symbols in
a string is called the length of the string. For a string w its length is represented by |w| . It can be The empty

string (also called null string) it has no symbols. The empty string is denoted by � Thus |�| = 0.

For example |00100| = 5, |aab| = 3, | � | = 0

Language = alphabet + string (word) + grammar (rules, syntax) + operations on languages (concatenation,
union, intersection, Kleene star)

Kinds of languages:

1- Talking language: (e.g.: English, Arabic): It has alphabet:� �={a,b,c,….z}From these alphabetic we
make sentences that belong to the language.
 Now we want to know is this sentence is true or false so �� We need a grammar.
Ali is a clever student. (It is a sentence � English language.)
2- Programming language: (e.g.: c++, Pascal):It has alphabetic:�={a,b,c,.z , A,B,C,..Z , ?, /, - ,\.}
From these alphabetic we make sentences that belong to programming language.
Now we want to know if this sentence is true or false so�we need a compiler to make sure that syntax is true.
3- Formal language: (any language we want.) It has strings from these strings we make sentences that
belong to this formal language.
 Now we want to know is this sentence is true or false so we need rules.
Example:

 Alphabetic: �= {0, 1}.
 Sentences: 0000001, 1010101.
 Rules: Accept any sentence start with zero and refuse sentences that start with one.

So we accept: 0000001 as a sentence satisfies the rules.
 And refuse: 1010101 as a sentence doesn't satisfy the rules.

Example:

 Alphabetic: �= {a, b}.
 Sentences: ababaabb, bababbabb
 Rules: Accept any sentence start with a and refuse sentences that start with b.
 So we accept: aaaaabba as a sentence satisfies the rules.�
 And refuse: baabbaab as a sentence doesn't satisfy the rules.

 Theory of Computation 5 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Regular Expression

is a set of symbols, Thus if alphabet= {a, b}, then aab, a, baba, bbbbb, and baaaaa would all be strings of
symbols of alphabet.
In addition we include an empty string denoted by � which has no symbols in it.
Examples of Kleene star:
 1* is the set of strings {�, 1, 11, 111, 1111, 11111, etc. }
 (1100)* is the set of strings {�, 1100, 11001100, 110011001100, etc. }
 (00+11)* is the set of strings {epsilon, 00, 11, 0000, 0011, 1100, 1111, 000000, 000011, 001100, etc. }
 (0+1)* is all possible strings of zeros and ones, often written as sigma * where sigma = {0, 1}
 (0+1)* (00+11) is all strings of zeros and ones that end with either 00 or 11.
(w)+ is a shorthand for (w)(w)* w is any string or expression and the superscript plus, +

1- Concatenation:
Notation to the concatenation: . (The dot.):
if L1 = {x, xxx} and L2 = {xx} So (L1.L2) means L1 concatenated L2 and it is equal = {xxx, xxxxx}

Examples on concatenations:
Ex1:
L1 = {a, b}.
L2 = {c, d}.
L1.L2 = {ac, ad, bC, bd}
Note: ab differ from ba.

Ex2:
�= {x}.
L1 = {set of all odd words over � with odd length}.
L1 = {set of all even words over � with odd length}.
L1= {x, xxx, xxxxx, xxxxxxx……}.
L2= {�, xx, xxxx, xxxxxx…}.
L1.L2 = {x, xxx, xxxxx, xxxxxxx…}.
Note:
���	
	���
������	���������������

Ex3:
L1 = {x, xxx}.
L2 = {xx}.
L1.L2 = {xxx, xxxxx}.
Some rules on concatenation:
�.x = x
L1.L2 = {set of elements}
��
 Definition of a Regular Expression
 A regular expression may be the null string, r = �
 A regular expression may be an element of the input alphabet, r = a
 A regular expression may be the union of two regular expressions, r = r1 + r2
 A regular expression may be the concatenation of two regular expressions, r = r1 r2
 A regular expression may be the Kleene closure (star) of a regular expression r = r1*
 A regular expression may be a regular expression in parenthesis r = (r1)

 Theory of Computation 6 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

 epsilon is the zero length string
 0, 1, a, b, c, are symbols in sigma
 x is a variable or regular expression
 (...)(...) is concatenation
 (...) + (...) is union
 (...)* is the Kleene Closure = Kleene Star

 (�)(x) = (x)(�) = �
 (�)(x) = (x)(�) = x
 (�) + (x) = (x) + (�) = x
 x + x = x
 (�)* = (�)(�) = �
 (x)* + (�) = (x)* = x*
 (x + �)* = x*
 x* (a+b) + (a+b) = x* (a+b)
 x* y + y = x* y
 (x + �)x* = x* (x + �) = x*
 (x+ �)(x+ �)* (x+ �) = x*

λ is the null string (there are no symbols in this string)
* is the set of all strings of length greater than or equal to 0

Example:
A = {a,b} // the alphabet is composed of a and b

A* = {λ, a,b,aa,ab,ba,bb,aaa,aab,…}
The symbol * is called the Kleene star.

∅ (empty set)

λ (empty string)
() delimiter ,

∪ + union (selection)
concatenation

Given regular expressions x and y, x + y is a regular expression
representing the set of all strings in either x or y (set union)

x = {a b} y = {c d} x + y = {a b c d}

Mark Hills CS421 Lecture 9: Regular Expressions and Finite Automata
Example 1
Let A={0,1}, W1 = 00110011, W2 = 00000
W1W2 = 0011001100000
W2W1 = 0000000110011

W1 λ = W1 = 00110011

λ W2 = W2 = 00000

x = {a b} y = {c d} xy = {ac ad bc bd}

Note:

(a + b)
* = (a*

b
*
)

*

 Theory of Computation 7 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Examples of regular expressions

Describe the language = what is the output (words, strings) of the following RE

Regular expression output(set of strings)

λ {λ}

λ* {λ}

a { a }

aa { aa }

a* {λ, a, aa, aaa, ….}

aa* { a, aa, aaa, ... }

a+ { a, aa, aaa, ...}

ba+ { ba, baa, baaa, ...}

(ba)+ { ba, baba, bababa, ...}

(a|b) { a, b }

a|b* { a, λ, b, bb, bbb, ... }

(a|b)* { λ, a, b, aa, ab, ba, bb, ... }

aa(ba)*bb { aabb, aababb, aabababb, ... }

(a + a) {a}

(a + b) {a, b}

(a + b)2 (a + b)(a + b) == {aa, ab, ba, bb}

(a + b + c) {a, b, c}

(a + b)* {λ, a, b, aa, bb, ab, ba, aaa, bbb, aab, bba, ….}

(abc) {abc}

(λ + a) bc {bc, abc}

ab* {a, ab, abb, abbb, …}

(ab)* {λ, ab, abab, ababab, …}

a + b* {a, λ, b, bb, bbb, …}

a (a + b)* {a, aa, ab, aaa, abb, aba, abaa, … }

(a + b)* a (a + b)* {a, aaa, aab, baa, bab, …}

(a + λ)* (a)* = {λ, a, aa, aaa, ….}

x* (a + b) + (a + b) x* (a + b)

x* y + y x* y

(x + λ)x* x* (x + λ) = x*

(x + λ)(x + λ)* (x + λ) x*

 Theory of Computation 8 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

start with a a (a + b)*

end with b (a + b)* b

start with a and end with b

start with a or b

not start with b

contains exactly 2 a's (b)* a (b)* a (b)*

contains at least 2 a's (a + b)* a (a + b)* a (a + b)*

contains exactly 2 a's or 2 b's [(b)* a (b)* a (b)*] + [(a)* b (a)* b (a)*)]

contains even no of a [(b)* a (b)* a (b)*]*

not start with a and not contain b

with even length of a (aa)+

Strings containing 101

Even number of 0’s and contains 101

Even number of 0’s or contains 101

Every one has at least two zeros that follow it

Second symbol not a one

End with 00 or 01

Exercise

Ex. 1: Find a regular expression over the alphabet { a, b } that contain exactly three a's.
Ex. 2: Find a regular expression over the alphabet { a, b } that end with ab.
Ex. 3: Find a regular expression over the alphabet { a, b } that has length of 3.

Ex. 4: Find a regular expression over the alphabet { a, b } that contain exactly two successive a's.
Ex. 5: Find the output (words) for the following regular expressions.

(λ)*

(x)* + (λ)

aa* b

bba*a

(a + b)* ba

(0+1)* 00 (0+1)*

(11 + 0)* (0+11)*

01* + (00+101)*

(a+b)* abb+

(((01+10)* 11)* 00)*

 Theory of Computation 9 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Finite Automata

����	��������� �!��"��������#�$%�&���'��(��)$*����	
����+���,-(�
.	��/��0��
�

is a device consisting of a tape and a control circuit
which satisfy the following conditions:

1. The tape start from left end and extends to the right
without an end.

2. The tape is divide into squares in each a symbol.

3. The tape has a read only head.

4. The head moves to the right one square every time it
reads a symbol. It never moves to the left. When it
sees no symbol, it stops and the automata terminates
its operation.

5. There is a control determines the state of the
automaton and also controls the movement of the head.

A DFA represents a finite state machine that recognizes a RE.

For example, the following FA: recognize (accept) string ab

A finite automaton consists of a finite set of states, a set of transitions (moves), one start state, and a set of
final states (accepting states). In addition, a DFA has a unique transition for every state combination.
it is a set of states, and its “control” moves from state to state in response to external “inputs” .
A finite automaton, FA, provides the simplest model of a computing device. It has a central processor of
finite capacity and it is based on the concept of state.

where ,)F,S , T, A, Q= (tuple M 5finite state machine is a

o Q --set of states = {q0, q1, q2, ….}

o A -- set of input symbols ={a,b, …, 0, 1, …}

o T --set of transitions or rules

o S -- an initial state

o F -- the final state -- could be more than one final state

Input
Yes

�

No

 Theory of Computation 10 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Designing (drawing) FA

State
with numbers or any name

Start
- or small arrow

Final
+ or double circle

Transition
(only one input or symbol on the edge)
a,b allowed means (a or b)

 loop

Example: Q = { 0, 1, 2 }, A= { a, b }, F = { 1 }, the initial state is 0 and T is shown in the following table.

Transition diagram:

 TG has many inputs on the edge ab FA has only one input on the edge a

Deterministic Finite Automata DFA and Non Deterministic Finite Automata NFA

 DFA: different input from state to different states NFA: one input from state to different states

State (q) Input (a) Input (b)

0 1 2

1 2 2

2 2 2

 Theory of Computation 11 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Language accepted by FA
String is accepted by a FA if and only if the FA starting at the initial state and ends in an accepting state after
reading the string.

Examples of languages accepted by FA

 FA RE

 �

 a

 aa

 a+ = aa*

 a*

 a+b

 (a+b)*

 a*b

 Theory of Computation 12 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

 b(a+b)*

(a+b)*b

a(a+b)*b

(a+b)* b(a+b)*

ab(a+b)*

a*babb*

(aa)*ba

contains 3 a's b*ab*ab*ab*

 Theory of Computation 13 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

contains even number of a = (b*ab*ab*)+

a(bba + baa)*bb

a

 Theory of Computation 14 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Converting Regular Expression into a Finite Automata

 RE FA

�

a

aa

a+ = aa*

 NFA

a*

a+b

(a+b)*

a*b

b(a+b)*

 NFA

 Theory of Computation 15 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

 (a+b)*b

 NFA

a(a+b)*b

 NFA

 (a+b)* b(a+b)*

 NFA

ab(a+b)*

 NFA

a*babb*

NFA

 (aa)*ba

contains 3 a's b*ab*ab*ab*

 Theory of Computation 16 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

contains even number of a = (b*ab*ab*)+

dividable by 3

all bit strings that begin with 0 and end with 1

all bit strings whose number of 0's is a multiple
of 5

all bit strings with more 1's than 0's

all bit strings with no consecutive 1's

 Theory of Computation 17 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Converting NFA into DFA

Three steps : 1- find transition table ��,-����12�3�
	�

 2- drawing new design ���
���
�4���50�

 3- remove unreachable states $%��6�1�7������	��)�/����8�9�:����)$;������<6

Example : convert the following NDFA into DFA

Note: Any state contains final mark it will be final state

3)) remove unreachable states (marked by dashed circle – state q1 and state q3) because we can not reach it.

HW convert the following NFA into DFA

state a b

q0 q1q2 q0

q1 q2 q3

q2 q2q3 q2

q3 q3 -

q1q2 q2q3 q2q3

q2q3 q2q3 q2

 Theory of Computation 18 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Finite State Machines with Output (Mealy and Moore Machines)

Moore Machines

Moore machine M is the 5tuple M = (Q, A, O, T, F, s) where

Q is a finite set of states
A is the finite input alphabet
O is the finite output alphabet
T is the transition function
F is the output function Q�A
in addition to the start state or the initial state

A Moore machine is very similar to a Finite Automaton (FA), with a few key differences:

• It has no final states.

• It does not accept or reject input, instead, it generates output from input.

• Moore machines cannot have nondeterministic states.

Every input gives output not if word belongs to the machine or language like FA

In each state we stop we print out what inside that state (it's content)

so the output will be more than input by one because we start with start state and print out it's content before
we trace the input string

Input string aaababbaabb
State q0q1q2q2q3q1q0q0q1q2q3q0
Output 000010000010

this machine gives 1 after each aab

 aabaabaaababaab
0001001000100001

so we use Moore machine as a string recognizer to give us a mark (1) after each substring so we design a
machine put 0 in all states except the one after the one represent end of substring aba

The output of the machine contains 1 for each occurrence of the substring aab found in the input string.

H.W. Construct a Moore machine that outputs a binary string that contains a 1 for every double letter
substring in an input string composed of a’s and b’s. For example if abba is the input string 0010 is the
corresponding output.

This machine might be considered
as a "counting" machine

 Theory of Computation 19 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

 Input = 0010 Output=11010

Mealy machines

Moore machine M is a 5 tuple M = (Q, A, O, T, F ,s) where

Q is a finite set of states
A is the finite input alphabet
O is the finite output alphabet
T is the transition function
F is the output function Q�A
in addition to the start state or the initial state

output on edge
same input to output

aaabb
01110

Mealy machines are finite-state machines that act as transducers or translators, taking a string on an input
alphabet and producing a string of equal length on an output alphabet.
Mealy machine does not accept or reject an input string,

The machine represented in below, outputs an E if the number of 1s read so far is even and an O if it is odd;

for example, the translation of 11100101 is OEOOOEEO.

A Mealy machine that outputs

E if the number of 1 is even

 O if the number of 1 is odd

Binary inverter

There are no accept states in a Mealy machine because it is not a language recogniser, it is an output
producer. Its output will be the same length as its input.

The following Mealy machine takes the one's
complement of its binary input. In other words, it flips
each digit from a 0 to a 1 or from a 1 to a 0.

 Theory of Computation 20 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Binary Incrementer

One thing you will notice is the numbering of the
states. Usually, if there are 3 states, we number them 00, 01, and 10.
 - the input bit string is a binary number fed in backward
 - The output string will be the binary number that is one greater and that is generated right to left.
 - The machine will have 3 states: start, carry and no-carry. The carry state represents the overflow when two
bits of 1’s are added, we print a 0 and we carry a 1.
Let the input string be 1011 (binary representation of 11).
• The string is fed into the machine as 1101 (backwards).
• The output will be 0011, which when reversed is 1100 and is the
binary representation of 12.
• In Mealy machine, output length = input length. Hence, if input were

1111, then output would be 0000 (overflow situation).

Homework:
Construct a Mealy machine that takes a string of a’s and b’s as input and outputs a binary string with a 1 at
the position of every second double letter. For example, for ababbaab the machine produces 00001010

and for the input bbb the output string 011 is produced.

 Theory of Computation 21 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Kleene's Theorem
Any language that can be defined by: Regular expression/ Finite automata/ Transition graph
Can be defined by all three methods.

Proof

There are three parts of our proof :
Part1: every language that can be defined by a FA == can be defined by a TG.
Part2: every language that can be defined by a TG == can be defined by a RE.
Part3: every language that can be defined by a RE == can be defined by a FA.

proof of part1

Every FA is itself a TG. Therefore, any language that has been defined by a FA has already
been defined by a TG.

proof of part2

The proof of this part will be by constructive algorithm. This means that we present a
procedure that starts out with a TG and ends up with a RE that defines the same language.

If we have many start states = become only one

becomes

If we have many final states = become only one

becomes

we are now going to build the RE that defines the same language as TG
reduce the number of edges or states in each time

 Theory of Computation 22 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

 becomes

 becomes

 becomes

becomes

 becomes

special case :

 becomes

our goal: unique start state and unique final state.

 Theory of Computation 23 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Example

Find the RE that defines the same language accepted by the following TG using Kleenes
theorem.

RE=(aa+bb)(a+b)*(aa+bb)

 Theory of Computation 24 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Example

Find the RE that defines the same language accepted by the following TG using Kleenes
theorem.

RE= [(aa+bb)+(ab+ba)(aa+bb)*(ab+ba)]*

 Theory of Computation 25 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

proof of part3

Rule1: there is a FA that accepts any particular letter of the alphabet.
There is an FA that accepts only the word �.

FA accepts only � FA accepts only a FA accepts

a+b

Rule2: if there is a FA called FA1, that accepts the language defined by the regular
expression r1 and there is a FA called FA2, that accepts the language defined by the regular
expression r2, then there is a FA calledFA3 that accepts language defined by the regular
expression (r1+r2).

Example

We have FA1 accepts all words with a double a in them, and FA2 accepts all words ending
in b. we need to build FA3 that accepts all words that have double a or that end in b.

FA1

FA2

FA3

Z1 = x1 or y1
Z2 = x2 or y1
Z3 = x1 or y2
Z4 = x3 or y1
Z5 = x3 or y2

 a b

-x1 X2 X1

X2 X3 X1

+x3 X3 X3

 a b

-y1 Y1 Y2

+y2 Y1 Y2

 a b

Z1 Z2 Z3

Z2 Z4 Z3

Z3 Z2 Z3

Z4 Z4 Z5

Z5 Z4 Z5

 Theory of Computation 26 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Example

z1=x1 or y1
z2=x2 or y3
z3=x1 or y2
z4=x3 or y1
z5=x1 or y4
z6=x2 or y4
z7=x3 or y3
z8=x3 or y2
z9=x2 or y2
z10=x1 or y3
z11=x3 or y4
z12=x2 or y1

 a b

-x1 X2 X1

x2 X3 X1

+x3 X3 X3

 a b

-+y1 Y3 Y2

Y2 Y4 Y1

Y3 Y1 Y4

Y4 Y2 Y3

 a b

-+z1 z2 z3

z2 Z4 z5

z3 Z6 z1

+z4 Z7 Z8

Z5 Z9 Z10

Z6 Z8 Z10

+Z7 Z4 Z11

Z8 Z11 Z4

Z9 Z11 Z1

Z10 Z12 Z5

+Z11 Z8 Z7

+Z12 z7 Z3

 Theory of Computation 27 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

HomeWork

Let FA1 accepts all words ending in a, and let FA2 accepts all words with an odd number of
letters (odd length). Build FA3 that accepts all words with odd length or end in a using
Kleene's theorem.

FA1 FA2

HomeWork

Let FA1 accepts all words ending in a, and let FA2 accepts all words end with b.
Build FA3 that accepts FA1+FA2 using Kleene's theorem.

FA1 FA2

 Theory of Computation 28 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Rule3: if there is a FA1 that accepts the language defined by the regular expression r1 and a
FA2 that accepts the language defined by the regular expression r2, then there is a FA3 that
accepts the language defined by the concatenation r1r2.
We can describe the algorithm for forming FA3 as follows:
We make a z state for each none final x state in FA1. And for each final state in FA1 we
establish a z state that expresses the options that we are continuing on FA1 or are beginning
on FA2.

We have to connect (merge) the final state of FA1 with the start state of FA2 to produce new
state (wich it is not final)
Example:

Z1=x1
Z2=x2
Z3=x3 or y1
Z4=y2
But it is not simple like that, so we have to take all possablites

�������������	
�state�
�
��

 Theory of Computation 29 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

 Example

We have FA1 accepts all words with a double a in them, and FA2 accepts all words ending
in b. we need to build FA3 that accepts all words that have double a and end with b.

FA1 FA2

Z1= x1
Z2= x2
Z3= x3 or y1
Z4= x3 or y2 or y1

 a B

-y1 Y1 y2

+y2 Y1 Y2

 a B

-x1 X2 X1

X2 X3 X1

+x3 X3 X3

 a b

-z1 Z2 Z1

z2 Z3 Z1

z3 Z3 Z4

+z4 Z3 Z4

 Theory of Computation 30 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

HomeWork

Let FA1 accepts all words with a double a in them, and let FA2 accepts all words with an
odd number of letters (odd length). Build FA3 that accepts all words with odd length and
have double a using Kleene's theorem.

 Theory of Computation 31 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Rule4: if r is a regular expression and FA1 accepts exactly the language defined by r, then
there is an FA2 that will accept exactly the language defined by r*.
We can describe the algorithm for forming FA2 as follows:
Each z state corresponds to some collection of x states. We must remember each time we
reach a final state it is possible that we have to start over again at x1.
Remember that the start state must be the final state also.

Example

If r=a find r*

Example

If r=ab find r*

 Theory of Computation 32 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Example

If we have FA1 that accepts the language defined by the regular expression: r=a*+aa*b
We want to build FA2 that accept the language defined by r*.
Note: We will try to connect the final state with start state.

z1=x1
z2=x4
z3=x2 or x1
z4=x1 or x3 or x4
z5=x1 or x2 or x4

 a b

-+x1 X2 X4

X2 X2 X3

X3 X4 X4

X4 X4 X4

 a b

-+z1 Z3 Z2

Z2 Z2 Z2

+z3 Z3 Z4

+z4 Z5 Z2

+z5 Z5 Z4

 Theory of Computation 33 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Example

Find FA2 that accept the language defined by r1* using Kleene's theorem. r1= aa*bb*

z1=x1
z2=x2
z3=x3

z4=x1 or x4

z5=x2 or x3
z6=x1 or x3 or x4

��
��
��
��

 a b

-x1 X2 X3

X2 X2 X4

X3 X3 X3

+X4 X3 X4

 Theory of Computation 34 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Problems
For the following transition graphs, find regular expression

��

��

��

��

��
��

Consider following FA

��
��

Find

 r1+r2 r2 + r3 r1r2 r1r3 r2r1 r1r1 (r1)* (r2)* (r1+r2)* (r1r2)*
 (r2r1)*

• is r1r2 = r2r1 why ?

• is r1 + r2 = r2 + r1 why ?

• is r1r1 = (r1)* why ?

 Theory of Computation 35 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Grammars
A grammar is a set of rules which are used to construct a language (combine words to generate sentences).

Sentence = noun verb noun
Verb = went, eat, reading
Noun = lesson, boy, school, book

 Boy reading book

may be there are sentences have no meaning = book reading boy
���%=��
	3�>$'��2��$	&����?�(��������,���@$�;A�B�C�

G=(N, T, S, P)

N= set of nonterminal symbols (parts of speech (sentence, noun, verb, …))ex: S $%#$,� ����	�2���9$%A������D2�*
8��EF
T= set of terminal symbols (words, or symbols in) ex: a $%#$,� ����	��)2���9$%A�8��G7�D2�*
S= start symbol non-terminal used to start every derivation.
P= set of productions.

Example
productions: S → a S

 S → �

����������	
S ��
������	�
����

The derivation for aaaa is:
 S => aS

=> aaS
=> aaaS
=> aaaaS

 => aaaa� = aaaa
RE= a+

Example
productions: S → SS

S → a

S → �

����	����������������	��	����
� � S → SS / a / �

Derivation of aa
 S => SS

=> SSS
=> SSa
=> SSSa
=> SaSa
=> �aSa
=> �a�a = aa

Start terminal nonterminal

 Theory of Computation 36 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Example
 S → aS | bS | a | b

Derive abbab
 S => aS

=> abS
=> abbS
=> abbaS
=> abbab

Example
S � aA / bB
A � aS / a
B � bS / b
Find bbaaaa

Leftmost and rightmost derivation LMD RMD
The leftmost nonterminal (LMN) in a working string is the first nonterminal that we encounter when

we scan the string from left to right.

S → aS | ab
 S => aS

S => aaS
S => aaaS
S => aaaaS
S => aaaaab

Example
Consider the Grammar G = (X, T, R, S) with X = {S, A, B, a, b}, T = {a, b} and productions
 S � AB
 A � Aa | a
 B � bBa | ba

Example
 S � E
 E � E + T | T
 T � T*F | F
 F � (E) | id

Converting Grammar into Regular Expression

 Theory of Computation 37 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Chomsky Normal Form CNF

Context free grammar (CFG) is the most important type of grammars because it is context
free i.e. the right hand side is contains anything from terminal and nonterminal so that it is
widely using in the programming languages to represent the language rules and grammars.
It will be difficult to deal with this type of grammars because the right hand side contains
everything of terminals/nonterminals, so Chomsky introduced a new formula for constrain
this grammar to be :
The right hand side of a rule consists of: t / NN like the following grammar :

S → AB / BA / �

A → AA / a

B → BB / b

Nonterminal →→→→ Nonterminal Nonterminal or Nonterminal →→→→ terminal

The conversion takes place in four stages.
Introduce a new start variable if the start in the right side.
1. Eliminate lambda
2. Eliminate all unit-rules: rules of the form A � B
3. Change the terminals into nonterminals
4. Reduce rules with more than tow nonterminals into tow nonterminals
��
Example: Convert the following grammar into CNF:

S → ASA | aB

A → B | S

B → b | �

S’ → S

S → ASA | aB

A → B | S

B → b | �

Remove all epsilon productions, except from start variable. B ->e

S’ → S

S → ASA | aB | a

A → B | S | �

B → b | �

Remove all epsilon productions, except from start variable. A -> �

S’ → S

S → ASA | aB | a | SA | AS | S

A → B | S | �

B → b

 Theory of Computation 38 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Remove unit variable productions of the form S -> S

S’ → S | ASA | aB | a | SA | AS

S → ASA | aB | a | SA | AS | S

A → B | S

B → b

Remove unit variable productions of the form S’ -> S

S’ → S| ASA | aB | a | SA | AS

S → ASA | aB | a | SA | AS

A → B | S

B → b

Remove unit variable productions of the form A -> B

S’ → S| ASA | aB | a | SA | AS

S → ASA | aB | a | SA | AS

A → B | S | b

B → b

Remove unit variable productions of the form A -> S

S’ → S| ASA | aB | a | SA | AS

S → ASA | aB | a | SA | AS

A → S | b | ASA | aB | a | SA | AS

B → b

S’ → S| ASA | aB | a | SA | AS

S → ASA | aB | a | SA | AS

A → S | b | ASA | aB | a | SA | AS

B → b

Add variables and dyadic variable rules to replace any longer productions.

S’ → AA1 | UB | a | SA | AS

S → AA1 | UB | a | SA | AS

A → b | AA1 | UB | a | SA | AS

A1→ SA

U → a

B → b

 Theory of Computation 39 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Example: Convert the following grammar into CNF:

S →→→→ bA | aB

A →→→→ a | aS | bAA

B →→→→ b | bS | aBB

Step1: no lambda
Step2: no unit production
Step3: convert small into capital

S →→→→ YA / XB

A →→→→ a / XS / YAA

B →→→→ b / YS / XBB

X →→→→ a

Y →→→→ b

Step4: convert more than 2 nonterminal into 2 nonterminal

S →→→→ YA | XB

A →→→→ a | XS | YR1

B →→→→ b | YS | XR2

X →→→→ a

Y →→→→ b

R1 →→→→ AA

R2 →→→→ BB

Example: Convert the following grammar into CNF:
 S � aSaS / SaSb / ���

 S � SaS/SaSb/a/Sa/aS/ab/Sab/aSb 1��
��
 S � SAS/SASB/a/SA/AS/AB/SAB/ASB 3
 A�a
 B�b

 S � SR1/SR2/a/SA/AS/AB/SR4/AR3 4
 R1� AS
 R2� AR3
 R3� SB
 R4� AB

 Theory of Computation 40 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Example

 E →→→→ E + T | E – T | T

 T →→→→ T*F | T/F | F

 F →→→→ (E) | id

 Id →→→→ a | b | c

Then the string (a + b)*c belongs to above grammar and the derivation of this string:

E →→→→ T

 →→→→ T * F

 →→→→ F * F

 →→→→ (E) * F

 →→→→ (E + T) * F

 →→→→ (T + T) * F

 →→→→ (F + T) * F

 →→→→ (id + T) * F

 →→→→ (a + T) * F

 →→→→ (a + F) * F

 →→→→ (a + id) * F

 →→→→ (a + b) * F

 →→→→ (a + b) * id

 →→→→ (a + b) * c

Derivation can also be nicely represented in a tree form, as bellow
Derivation Tree for the Expression (a + b)*c

 Theory of Computation 41 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

The internal nodes of the derivation, or syntax, tree are nonterminal symbols and the frontier of the tree
consists of terminal symbols. The start symbol is the root and the derived symbols are nodes. The string
(a + b)*c obtained from the concatenation of the leaf nodes together from left to right.

A correct parse of the string a + b*c as a sequence of shift/reduce actions is given bellow.

Parse of the expression a + b*c

Stack Input Action

$ a + b*c$ Shift

id$ + b*c$ Reduce

F$ + b*c$ Reduce

T$ + b*c$ Reduce

E$ + b*c$ Reduce

+ E$ b*c$ Shift

b + E$ *c$ Shift

id + E$ *c$ Reduce

F + E$ *c$ Reduce

T + E$ *c$ Reduce

*T + E$ c$ Shift

c*T + E$ $ Reduce

id*T + E$ $ Reduce

F*T + E$ $ Reduce

T + E$ $ Reduce

E$ $ Accept

 Theory of Computation 42 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Derivations and Parse Trees

 For every derivation there is a unique corresponding parse tree.
 A derivation is a leftmost derivation if the variable chosen for substitution, at any step, is the
leftmost variable.

E → E + T | E – T | T we can write this grammar as:E →E + E | E – E | E * E | E / E | id

T → T * F | T / F | F

F → id
Derive id + id * id

E → E + T

 → T + T

 → F + T

 → id + T

 → id + T * F

 → id + F * F

 → id + id * F

 → id + id * id

The parse tree of an input sequence according to a CFG is the tree of derivations. For
example, the parse tree of id(x) + num(2) * id(y) is:

 E
 / | \
 E + T
 | / | \
 T T * F
 | | |
 F F id
 | |
 id num

So a parse tree has non-terminals for internal nodes and terminals for leaves.
There are tow types of parsing or derivation:
Top down parsing and Bottom up parsing

 Theory of Computation 43 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Top-down parsing starts from the start symbol of the grammar S and applies derivations until
the entire input string is derived (ie, a sequence of terminals that matches the input tokens).
For example,

E → E + T

 → T + T

 → F + T

 → i + T

 → i + T * F

 → i + F * F

 → i + i * F

 → i + i * i
Which matches the input sequence i + i * i ��

Bottom-up parsing starts from the input string and uses derivations in the opposite directions
(ie, by replacing the right hand side sequence of a production with the nonterminal. It stops
when it derives the start symbol. For example,

 i + i * i

→ F + i * i

→ T + i * i

→ E + i * i

→ E + F * i

→ E + T * i

→ T * T

→ E * T

→ E

 Theory of Computation 44 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Ambiguity
A CFG is ambiguous if it generates some string with more than one parse tree.
 A grammar is ambiguous if it has more than one parse tree for the same input sequence.
For example, the grammar G3 is ambiguous since it has two parse trees.
A string w is derived ambiguously in CFG G if it has two or more leftmost derivations.

Suppose, that the rules of the expression grammar were written E →E + E | E*E | id, then

two different syntax trees are the result. If the first production E →E + E were chosen then

the result would be the tree on the left, On the other hand, choosing the production E →E*E
first results in a syntax tree of an entirely different

Thus this grammar is ambiguous, because it is possible to generate two different syntax trees
for the expression a + b*c.
Exercises: Convert the following grammars into CNF:

1. S →HaSa | bSb | a | b | aa | bb

2. S →bA | aB

 A →HbAA | aS | a

 B → HaBB | bS | b

3. S→HAba

 A →Haab

 B → HAC

4. S →H0A0 |1B1 | BB

 A →HC

 B → HS|A

 C → HS| �

5. S →HaAa | bBb| �

 A →HC|a

 B → HC | b

 C → HCDE | �

 D →HA | B | ab

 Theory of Computation 45 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

6. SIabAB,
 AIbAB|A,
 BI BAa|A|�,
7. SIAB|aB
 AIaab|�
 BIbbA
1- SIaSb|ab.
 2- SIaSaA|A
 AIabA|b��

.
 3- SIabAB,
 AIbAB|A,
 BI BAa|A|�,

5.S → HaAD

A → aB | bAB

B → b

D → d

6. S → Aa | B

 B → A | bb

 A → a | bc | B��

7.S → ASB | �

A → HaAS | a

B → SbS | A | bb
8. Show a derivation tree for the string aabbbb with the grammar
 S I AB|x
 AI aB
 BI Sb
9. with the following grammar Derive 1+(0+(1+0)-1)

 N → N – N / N + N / (N) / D��
 D → 0/1

 Theory of Computation 46 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

The Chomsky Hierarchy

Noam Chomsky introduced the Chomsky hierarchy which classifies grammars and languages. This hierarchy
can be amended by different types of machines (or automata) which can recognize the appropriate class of
languages.

In the late fifties Noam Chomsky, a linguist at MIT, was investigating the relationship between the syntactic
structure of languages and the meaning (semantics) of statements in a language.

 The Chomsky hierarchy comprises four types of languages and their associated grammars and machines.

Type Language Grammar Machine Example

Type 3 Regular language Regular grammar RG
Finite Automata

FA
a*b*

Type 2 Context free language Context-free grammar CFG
Pushdown automaton

PDA a b

Type 1
Context sensitive
language

Context sensitive grammar
CSG

Linear bounded automaton
LBA a b c

Type 0
Recursively
enumerable language

Unrestricted grammar UG
Turing machine

TM

any
computable
function

regular languages context-free languages context-sensitive languages recursive enumerable

languages.
Type 3 type2 type1 type0

 Theory of Computation 47 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Type 3:

regular grammars generate the regular languages. Such aiii grammar restricts its rules to a single
nonterminal on the left-hand side and a right-hand side consisting of a single terminal, possibly followed by
a single nonterminal. The rule S I � is also here allowed if S does not appear on the right side of any rule.
These languages are exactly all languages that can be decided by a finite state automaton. Additionally, this
family of formal languages can be obtained by regular expressions. Regular languages are commonly used to
define search patterns and the lexical structure of programming languages.

N ���� t/tN

A� a/aB

S� aS/b
Problem is left recursion A � Aa

Type 2:

 context-free grammars generate the context-free languages. These are defined by rules of the form
A I J with A a nonterminal and J a string of terminals and nonterminals. These languages are exactly all
languages that can be recognized by a non-deterministic pushdown automaton. Context free languages are
the theoretical basis for the syntax of most programming languages.

S ���� (N U t)*

S� SS/aA/bA
S��
S�abB

Type 1:

context-sensitive grammars generate the context-sensitive languages. These grammars have rules of
the form KAL I KJL with A a nonterminal and K, L and J strings of terminals and nonterminals. The strings K
and L may be empty, but J must be nonempty. The rule S I M is allowed if S does not appear on the right
side of any rule. The languages described by these grammars are exactly all languages that can be recognized
by a non-deterministic Turing machine whose tape is bounded by a constant times the length of the input.

U����V U,V (N U t)+

S�SS
aA�bAa
BB�aB
A� � wrong
Left side <= right side

Type 0:
unrestricted grammars include all formal grammars. They generate exactly all languages that can be

recognized by a Turing machine. The language that is recognized by a Turing machine is defined as all the
strings on which it halts. These languages are also known as the recursively enumerable languages. Note that
this is different from the recursive languages which can be decided by an always halting Turing machine.

U����V U,V (N U t)*

S�SS
S�aAb
aA�Aa
BB� a
aA�bAa
Ba�bAb

 Theory of Computation 48 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Push Down Automata PDA

PDA consists of 7 components (7-tuple):
M = (Q, Sigma, Gamma, delta, q0, Z0, F) where

Q = a finite set of states
Sigma = a finite alphabet of input symbols (input tape)
Gamma = a finite set of push down stack symbols
Delta = a group of transitions
q0 = the initial state
Z0 = the initial stack contents - stack symbol N
F = the set of final, accepting, states

It is the machine that accepts CFG languages, the most important form is anbn , n>=1 i.e there is a relation
between exponents of both variables and it is gives strings like aaabbbN, aaaaabbbbbN , aaaaxaaaaN, abbcbbaN
Consist of basic shapes to represent PDA like triangle, diamond, trapezoidal …

The START symbol just points to the start state
The ACCEPT symbol represents a final state or accept
The REJECT symbol represents a reject state or error

Some of states are decision state; it is represent every function performed in a state by a different type of
box. The typical task performed in a state is to "read and branch" which will now be represented by a
diamond shaped box, such as:

Then we have two main operations either push the input string into the stack or pop it from the stack depending
on the reading string We need a type of memory which is the stack (First In Last Out) contain N simple to
represent the empty stack

N

a

N

a

a

N

a

a

a

N

ACCEPT REJECT

PUSH

POP

START

READ��
a ���b���

N
���

 Theory of Computation 49 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

We have to push the first part of string into the stack and then pop contents of the stack when we start
reading the second part of the string
For example aaabbbN We will push all "aaa" into the stack then we will pop when we start reading "bbb"
We can divide string reading into tow stages
When we get the first part "aaa" we will push them into the stack
and when we read the second part "bbb" we will pop from the stack, we should get "aaa" and the stack will
be empty and the string is reached to the space symbol
so if we read the space symbol we have to pop from the stack, if we got space symbol that is means the
string is accepted

Tracing the input string on the PDA
We will trace and witching 3 variables state, stack and the tape (input string)

For example: trace aaabbbN on the PDA a n b n n>=1

State Stack Tape

START N aaabbbN
READ N aaabbbN
PUSH aN aaabbbN
READ aN aaabbbN
PUSH aaN aaabbbN
READ aaN aaabbbN
PUSH aaaN aaabbbN
READ aaaN aaabbbN
POP aaN aaabbbN
READ aaN aaabbbN
POP aN aaabbbN
READ aN aaabbbN
POP N aaabbbN
READ N aaabbb�
POP - aaabbb�
ACCEPT

��

 Theory of Computation 50 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

��

���
�	���
� PDA�����	���RE���� ��
�!��"�"#��
���$������� ����"����%&��� �
���'(���%&�'(���������

 Example: a�

��

��

��

Example a + b

Example (a + b)*

Example a* b

Example a b*

��

����

H.W. Design a PDA for a*b*

H.W. Design a PDA for a n b n n>=1

H.W. Design a PDA for ca db a n>=1

H.W. a b c d n>=1

H.W. a b c d n,m>=1

 Theory of Computation 51 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Palindrome

We can design a PDA to check the odd palindrome (string can be read from right or left) RADAR, MADAM
We will use X as a mark to distinguish the middle of the string
We will push all letters of the first part before X

Read x with no action
Then we will pop the contents of stack
Check it with the tape, if it is same
We continue pop and read,

Until we get N then we will pop

One time if it is N so we reached
ACCEPT state else go to Reject state

Example : aabaXxabaaN

State Stack Tape

START N aaaxbbbN
READ N aaaxbbbN
PUSH aN aaaxbbbN
READ aN aaaxbbbN
PUSH aaN aaaxbbbN
READ aaN aaaxbbbN
PUSH aaaN aaaxbbbN
READ aaaN aaaxbbbN
READ aaaN aaaxbbbN
POP aaN aaaxbbbN
READ aaN aaxabbbN
POP aN aaaxbbbN
READ aN aaaxbbbN
POP N aaaxbbbN
READ N aaaxbbb�
POP - aaaxbbb�
ACCEPT

����������	
���X��
�����������������

 Theory of Computation 52 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Non deterministic palindrome NPDA
Here there is no distinguish mark,
but our palindrome is odd
(there is (a or b) in the middle)
so we will push all letters (a and b)
and then read one (a or b)
then continue reading the tape
and pop from the stack
until we get N

H.W.

Trace the string abbababbaN on the above PDA

State Stack Tape

START N abbababbaN

 Theory of Computation 53 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

H.W. a n b n n>=1 ���� aaaaaabbbN

State Stack Tape

START N aaaaaabbbN

H.W.

Design a PDA for a2nbnamb2m n,m>=1

 Theory of Computation 54 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

Turing Machine, TM

 A Turing machine is defined by M = (Q, Sigma, Gamma, delta, q0, B, F) where
 Q = finite set of states including q0
 Sigma = finite set of input symbols not including B
 Gamma = finite set of tape symbols including Sigma and B
 delta = transitions mapping Q x Gamma to Q x Gamma x {L,R}
 q0 = initial state
 B = blank tape symbol, initially on all tape not used for input
 F = set of final states

M = (Q, Sigma, Gamma, delta, q0, B, F)

�?��A�
,-�&��O��#��5%-�+2��)$*�
� �P&��$%	0��Q�'��A�B�C�2��$����2���	�&��R�;����Q�'��(�$%-��2�1$�����$%�9��,+�:�	�(�����/S2
�T$
()���S�U�$.��2�@���)���S�/A$.��2�1$��)��
.	��12)�������G����V�V�$%�&�

,EA�2����EF�D�*�P���T���G�+�W�,A2�D�;���8>��,+�W�,A2�$��&��2����	�&��X
�A2���S�$	F�X�

It is designed to solve 3 or more of letters with same no of letters abc …. And it can be designed for any
type of grammars
Read write direction
Input output direction
Tape same/different R/L

 (a+b)b(a+b)*

 Theory of Computation 55 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

 a
n

b
n

 , n>=1 aaabbbY

Palindrome aabaabaaY
�$����2���	�������$%(>��#���	��
S��	&��������F$�A�Z�����A�$-S��

A$.��2����)��Q��D�*�12���� $�+�W�,-0�U�*�C�S2����)��
E#�Q��/��
��

H.W.

Design a Turing machine for a
n

b
n

c
n

 ,n>=1

State tape
Start aaabbbY
2 AaabbbY
2 AaabbbY
2 AaabbbY
3 AaaBbbY
4 AaaBbbY
Start AaaBbbY
 AaaBbbY
 AAaBbbY

 .
 .
 .

 Theory of Computation 56 Hassan Kassim Mohammad

Mustansiriya University – college of sciences – computer science department – second class

����	�����	

	Automata Theory cover.pdf
	AutomataTheory3.pdf

