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Mustansiriya University – college of sciences – computer science department – second class 

Instructor: Hassan Kassim Mohammad 
Theory of computation is the theoretical study of capabilities and limitations of Computers (Theoretical 
models of computation). 
 

Objectives: 

Providing students with: 
o an understanding of basic concepts in the theory of computation through simple models of 

computational devices. 
o apply models in practice to solving problems in diverse areas such as string searching, pattern 

matching, cryptography, and language design; 
o understand the limitations of computing, the relative power of formal languages and the inherent 

complexity of many computational problems. 
o be familiar with standard tools and notation for formal reasoning about machines and programs. 

 

REFERENCES: 
1. Introduction to Computer Theory 2nd Edition 

Daniel I. A. Cohen John Wiley & Sons, Inc 1997. ISBN 0-471-13772-3 
2. Introduction to Automata Theory, Languages, and Computation, 2/E, 

John E. Hopcroft, Rajeev Motwani, Jeffrey D.Ullman, Addison-Wesley 2001. ISBN 0-201-44124-1. 
 

 
 

Units: 6 

 

Grading Policy 

 

Semester Exam Attendance Assignments & Quizzes Total 

1st semester 10 2 3 15 

2nd semester 10 2 3 15 

Final 70 - - 70 

 
Notes 

Student must attend at least 80% of total classes to pass the course. 
Any kind of cheating/plagiarism may result in a Fail grade in the course. 
No labs. But you should write some programs with any language you may know. 
There will be about 30 lectures 100 minutes each. 
Late homework submissions will be penalized 

 

Office Hours 

Sunday, Monday, Tuesday, Wednesday 
 

Contact Information 

Office: computer science dept. room no. 67 
      E-mail: hassan.kassim@yahoo.com 
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Syllabus 
 

Week Date Subject Chapter 
��  Introduction, terminology, definitions     1 

��  Sets and operations 1 

��  languages 2 

��  Regular Expressions  RE 4 

��  Finite Automata  FA   5 

��  Deterministic Finite Automaton  DFA 5 

��  Non Deterministic Finite Automaton  NDFA 8 

	�  Language Accepted by Finite Automata  5 


�  Convert Regular Expression into NFA  

���  Constructing regular expression from Finite Automata        

���  Finite Automata with Epsilon moves                        

���  Moore and Mealy machines            9 

���  Converting between Moore and Mealy machine  

���  Pumping lemma for regular languages        

���  Kleene's Theorem 7 

���  Regular Grammar  10 

���  Myhill-Nerode Theorem   Minimization of DFA  

�  EXAM  

�	�  Context-free Languages  13 

�
�  Pushdown Automata                            17 

���  CFG/CFL to PDA                                     18 

���  PDA to CFG/CFL                               

���  CFG derivation trees  Parsing  22 

���  Chomsky normal form                          16 

���  Greibach normal form                         16 

���  Ambiguous CFL's                

�  EXAM  

���  TURING MACHINES  TM  24 

���  COMPUTABILITY and COMPLEXITY   

�	�  Unsolvable Problems   

�
�  Time Complexity   

���  CYK algorithm for CFG's                       

���  CFL pumping lemma and properties              

���  Church Turing Thesis                          
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As a computer IT, you must study the following: 
��1- Automata and formal language. 
          Which answers - What are computers (Or what are models of computers) 
2- Compatibility. 
        Which answers   - What can be computed by computers? 
3- Complexity.  
        Which answers   - What can be efficiently computed? 
In automata we will simulates parts of computers. Or we will make mathematical models of computers 
Automata are more powerful than any real computer because we can design any machine on papers that can 
do everything we want. 

Theory of computation is the theoretical study of capabilities and limitations of Computers 
(Theoretical models of computation). 

Sets 
Let A, B, and C be subsets of the universal set U 

Distributive properties 

A (B U C) (A B) U (A C 

A U (B C) (A U B) (A U C 

 

Idempotent properties 

A A A, 

A U A A. 

 

Double Complement property 

(A
�

)
�

A. 

 

De Morgan’s laws 

(A U B)
�

A
�

B
�

(A B)
�

A
�

U B
�

 

Commutative properties 

A B B A, 

A U B B U A. 

 

 Associative laws 

A (B C) (A B) C 

A U (B U C) (A U B) U C 

 

 Identity properties 

A U � A, 

A U A. 

 

Complement properties 

A U A
�

U, 

A A
�

�. 
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Language 

language is the set of all strings of terminal symbols derivable from alphabet. 

alphabet is a finite set of symbols. For example {0, 1} is an alphabet with two symbols, {a, b} is another 
alphabet with two symbols and English alphabet is also an alphabet. A string (also called a word) is a finite 
sequence of symbols of an alphabet. b, a and aabab are examples of string over alphabet {a, b} and 0, 10 
and 001 are examples of string over alphabet {0, 1},  A null string is a string with no symbols, usually 
denoted by epsilon or lambda (�). A language is a set of strings over an alphabet. Thus {a, ab, baa} is a 
language (over alphabert {a,b}) and {0, 111} is a language (over alphabet {0,1}). The number of symbols in 
a string is called the length of the string. For a string w its length is represented by |w| . It can be The empty 

string (also called null string) it has no symbols. The empty string is denoted by �  Thus |�| = 0. 

For example  |00100| = 5, |aab| = 3, | � | = 0 

Language = alphabet  + string (word)  +  grammar (rules, syntax) + operations on languages (concatenation, 
union, intersection, Kleene star)  

Kinds of languages: 

1- Talking language: (e.g.: English, Arabic): It has alphabet:� �={a,b,c,….z}From these alphabetic we 
make sentences that belong to the language. 
 Now we want to know is this sentence is true or false so �� We need a grammar. 
Ali is a clever student. (It is a sentence � English language.) 
2- Programming language: (e.g.: c++, Pascal):It has alphabetic:�={a,b,c,.z , A,B,C,..Z , ?, /, - ,\.} 
From these alphabetic we make sentences that belong to programming language. 
Now we want to know if this sentence is true or false so�we need a compiler to make sure that syntax is true. 
3- Formal language: (any language we want.) It has strings from these strings we make sentences that 
belong to this formal language. 
 Now we want to know is this sentence is true or false so we need rules. 
Example: 

     Alphabetic: �= {0, 1}. 
     Sentences:   0000001, 1010101. 
     Rules:         Accept any sentence start with zero and refuse sentences that start with one.    

So we accept: 0000001 as a sentence satisfies the rules.  
       And refuse: 1010101 as a sentence doesn't satisfy the rules.   
      
Example: 

    Alphabetic: �= {a, b}. 
    Sentences: ababaabb, bababbabb 
    Rules:        Accept any sentence start with a and refuse sentences that start with b.   
    So we accept: aaaaabba as a sentence satisfies the rules.�       
       And refuse: baabbaab as a sentence doesn't satisfy the rules.   
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Regular Expression 

is a set of symbols, Thus if  alphabet= {a, b}, then aab, a, baba, bbbbb, and baaaaa would all be strings of 
symbols of alphabet.  
In addition we include an empty string denoted by � which has no symbols in it. 
Examples of Kleene star: 
    1*  is the set of strings {�, 1, 11, 111, 1111, 11111, etc. } 
    (1100)* is the set of strings {�, 1100, 11001100, 110011001100, etc. } 
    (00+11)* is the set of strings {epsilon, 00, 11, 0000, 0011, 1100, 1111, 000000, 000011, 001100, etc. } 
    (0+1)* is all possible strings of zeros and ones, often written as sigma * where sigma = {0, 1} 
    (0+1)* (00+11) is all strings of zeros and ones that end with either 00 or 11.   
(w)+  is a shorthand for (w)(w)*   w is any string or expression and the superscript plus, +   
 
1- Concatenation: 
Notation to the concatenation: . (The dot.): 
if L1 = {x, xxx} and L2 = {xx} So (L1.L2) means L1 concatenated L2 and it is equal = {xxx, xxxxx} 
 
Examples on concatenations: 
Ex1: 
L1 = {a, b}. 
L2 = {c, d}. 
L1.L2 = {ac, ad, bC, bd} 
Note: ab differ from ba. 
 
Ex2: 
�= {x}. 
L1 = {set of all odd words over � with odd length}. 
L1 = {set of all even words over � with odd length}. 
L1= {x, xxx, xxxxx, xxxxxxx……}. 
L2= {�, xx, xxxx, xxxxxx…}. 
L1.L2 = {x, xxx, xxxxx, xxxxxxx…}. 
Note: 
���	
	���
������	���������������  
 
Ex3: 
L1 = {x, xxx}. 
L2 = {xx}. 
L1.L2 = {xxx, xxxxx}. 
Some rules on concatenation: 
�.x = x 
L1.L2 = {set of elements} 
��
 Definition of a Regular Expression 
  A regular expression may be the null string,      r = � 
  A regular expression may be an element of the input alphabet,       r = a 
  A regular expression may be the union of two regular expressions,        r = r1 + r2 
  A regular expression may be the concatenation of two regular expressions,      r = r1 r2 
  A regular expression may be the Kleene closure (star) of a regular expression   r = r1* 
  A regular expression may be a regular expression in parenthesis      r = (r1) 
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    epsilon is the zero length string 
        0, 1, a, b, c, are symbols in sigma 
        x is a variable or regular expression 
        ( ... )( ... ) is concatenation 
        ( ... ) + ( ... ) is union 
        ( ... )*  is the Kleene Closure = Kleene Star 
 
      (�)(x) = (x)( �) = � 
      (�)(x) = (x)( �) = x 
      (�) + (x) = (x) + (�) = x 
      x + x  = x 
      (�)* = (�)( �) = � 
      (x)* + (�) = (x)* = x* 
      (x + �)* = x* 
      x* (a+b) + (a+b) = x* (a+b) 
      x* y + y = x* y 
      (x + �)x* = x* (x + �) = x* 
      (x+ �)(x+ �)* (x+ �) = x* 
 

λ  is the null string (there are no symbols in this string) 
*  is the set of all strings of length greater than or equal to 0 
 
Example: 
A = {a,b} // the alphabet is composed of a and b 

A* = {λ, a,b,aa,ab,ba,bb,aaa,aab,…} 
The symbol * is called the Kleene star. 

∅ (empty set) 

λ (empty string) 
(   ) delimiter , 

∪ +  union (selection) 
concatenation  
 
Given regular expressions x and y, x + y is a regular expression 
representing the set of all strings in either x or y (set union) 

x = {a b} y = {c d} x + y = {a b c d} 

Mark Hills CS421 Lecture 9: Regular Expressions and Finite Automata 
Example 1 
Let A={0,1}, W1 = 00110011, W2 = 00000 
W1W2 = 0011001100000 
W2W1 = 0000000110011 

W1 λ = W1 = 00110011 

λ W2 = W2 = 00000 

x = {a b} y = {c d} xy = {ac ad bc bd} 

Note: 

( a + b )
* = ( a*

b
*
 )

*
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Examples of regular expressions 

Describe the language = what is the output (words, strings) of the following RE 

 

Regular expression output(set of strings) 

λ {λ} 

λ* {λ} 

a { a } 

aa { aa } 

a* {λ, a, aa, aaa, ….} 

aa* { a, aa, aaa, ... } 

a+ { a, aa, aaa, ...} 

ba+ { ba, baa, baaa, ...} 

(ba)+ { ba, baba, bababa, ...} 

(a|b) { a, b } 

a|b* { a, λ, b, bb, bbb, ... } 

(a|b)* { λ, a, b, aa, ab, ba, bb, ... }  

aa(ba)*bb { aabb, aababb, aabababb, ... } 

(a + a) {a} 

(a + b) {a, b} 

(a + b)2 (a + b)(a + b) == {aa, ab, ba, bb} 

(a + b + c) {a, b, c} 

(a + b)* {λ, a, b, aa, bb, ab, ba, aaa, bbb, aab, bba, ….} 

(abc) {abc} 

(λ + a) bc {bc, abc} 

ab* {a, ab, abb, abbb, …} 

(ab)* {λ, ab, abab, ababab, …} 

a + b* {a, λ, b, bb, bbb, …} 

a (a + b)* {a, aa, ab, aaa, abb, aba, abaa, … } 

(a + b)* a (a + b)*   {a, aaa, aab, baa, bab, …} 

(a + λ)* (a)* = {λ, a, aa, aaa, ….} 

x* (a + b) + (a + b) x* (a + b) 

x* y + y x* y 

(x + λ)x* x* (x + λ) = x* 

(x + λ)( x + λ)* (x + λ) x* 
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start with a a (a + b)* 

end with b  (a + b)* b 

start with a and end with b  

start with a or b  

not start with b  

contains exactly 2 a's (b)* a (b)* a (b)* 

contains at least 2 a's (a + b)* a (a + b)* a (a + b)* 

contains exactly 2 a's or 2 b's   [(b)* a (b)* a (b)*]  +  [(a)* b (a)* b (a)*)] 

contains even no of a   [ (b)* a (b)* a (b)* ]* 

not start with a and not contain b  

with even length of  a (aa)+ 

Strings containing 101  

Even number of 0’s and contains 101  

Even number of 0’s or contains 101  

Every one has at least two zeros that follow it  

Second symbol not a one  

End with 00 or 01  

 

Exercise  

Ex. 1: Find a regular expression over the alphabet { a, b } that contain exactly three a's.  
Ex. 2: Find a regular expression over the alphabet { a, b } that end with ab.  
Ex. 3: Find a regular expression over the alphabet { a, b } that has length of 3.  

Ex. 4: Find a regular expression over the alphabet { a, b } that contain exactly two successive a's.    
Ex. 5: Find the output (words) for the following regular expressions.    
 

(λ)*  

(x)* + (λ)     

aa* b  

bba*a  

(a + b)* ba  

(0+1)* 00 (0+1)*  

(11 + 0)* (0+11)*  

01* + (00+101)*  

(a+b)* abb+  

(((01+10)* 11)* 00)*  
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Finite Automata 

����	��������� �!��"��������#�$%�&���'��(��)$*����	
����+���,-(�
.	��/��0��
�  

is a device consisting of a tape and a control circuit 
which satisfy the following conditions: 

1. The tape start from left end and extends to the right 
without an end. 

2. The tape is divide into squares in each a symbol.  

3. The tape has a read only head.  

4. The head moves to the right one square every time it 
reads a symbol. It never moves to the left. When it 
sees no symbol, it stops and the automata terminates 
its operation.  

5. There is a control determines the state of the 
automaton and also controls the movement of the head. 

 

 

 

A DFA represents a finite state machine that recognizes a RE.  

For example, the following FA:           recognize (accept) string  ab 

 
A finite automaton consists of a finite set of states, a set of transitions (moves), one start state, and a set of 
final states (accepting states). In addition, a DFA has a unique transition for every state combination.  
it is a set of states, and its “control” moves from state to state in response to external “inputs” .      
A finite automaton, FA, provides the simplest model of a computing device. It has a central processor of 
finite capacity and it is based on the concept of state.  

 

where , )F,S , T, A, Q= ( tuple  M 5finite state machine is a  

o Q --set of states = {q0, q1, q2, ….} 

o A -- set of input symbols ={a,b, …, 0, 1, …} 

o T --set of transitions or rules  

o S -- an initial state     

o F -- the final state  -- could be more than one final state 

 

 

 

 

Input 
Yes 

 

� 

No 
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Designing (drawing) FA 

 
State   
with numbers or any name 

Start   
- or small arrow 

Final  
+ or double circle 

Transition 
(only one input or symbol on the edge)   
a,b allowed means  (a or b) 

 

         loop  

 

 

Example: Q = { 0, 1, 2 }, A= { a, b }, F = { 1 }, the initial state is 0 and T is shown in the following table.  
 
     
 
 
 
 
 
 
 

 

Transition diagram:  

    TG has many inputs on the edge  ab                           FA has only one input on the edge   a  

 

                                                         

 

 

Deterministic Finite Automata DFA and Non Deterministic Finite Automata NFA  

 DFA: different input from state to different states       NFA: one input from state to different states 

 

 

   

 

 

 

 

 

 

State (q) Input (a) Input (b) 

0  1 2 

1  2 2 

2  2 2 
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Language accepted by FA 
String is accepted by a FA if and only if the FA starting at the initial state and ends in an accepting state after 
reading the string. 
 

Examples of languages accepted by FA 

 

    FA RE 

 � 

 a 

 aa 

 a+ = aa*  

 a* 

 a+b 

 (a+b)* 

 a*b 
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 b(a+b)*            

 

(a+b)*b              

 

a(a+b)*b                                         

 

(a+b)* b(a+b)* 

 

ab(a+b)* 

 

a*babb* 

 

(aa)*ba 

 

contains 3 a's    b*ab*ab*ab* 
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contains even number of a = (b*ab*ab*)+ 

 

 

 

 

 

a(bba + baa)*bb 

 

a 
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Converting Regular Expression into a Finite Automata  

   RE FA 

�  

 

  

a  

aa   

a+ = aa*                              

 

                                   NFA 

a*  

a+b  

(a+b)* 

 

 

a*b  

b(a+b)*  

 

                                       NFA 
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 (a+b)*b 

                                         NFA 

a(a+b)*b 

                     NFA 

 (a+b)* b(a+b)* 

                                          NFA 

ab(a+b)* 

                    NFA 

a*babb* 

NFA 

 (aa)*ba 

 

contains 3 a's    b*ab*ab*ab* 
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contains even number of a = (b*ab*ab*)+ 

 

dividable by 3     

 

all bit strings that begin with 0 and end with 1  

 

all bit strings whose number of 0's is a multiple 
of 5 

 

 

all bit strings with more 1's than 0's   

 

all bit strings with no consecutive 1's  
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Converting NFA into DFA 

Three steps :  1- find transition table  ��,-����12�3�
	� 

     2- drawing new design  ���
���
�4���50� 

     3- remove unreachable states  $%��6�1�7������	��)�/����8�9�:����)$;������<6 

Example : convert the following NDFA into DFA 

 

 

 

 

 

 

 

 

Note: Any state contains final mark it will be final state  

 

 

 

 

3)) remove unreachable states (marked by dashed circle – state q1 and state q3 ) because we can not reach it. 

 

 

--------------------------------------------------------------------------------------------------------------------------------- 

HW convert the following NFA into DFA 

 

 

 

 

state a b 

q0 q1q2 q0 

q1 q2 q3 

q2 q2q3 q2 

q3 q3 - 

q1q2 q2q3 q2q3 

q2q3 q2q3 q2 
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Finite State Machines with Output (Mealy and Moore Machines)  

Moore Machines 

Moore machine M is the 5tuple M = (Q, A, O, T, F, s) where  

Q is a finite set of states  
A is the finite input alphabet  
O is the finite output alphabet  
T is the transition function  
F is the output function Q�A  
in addition to the start state or the initial state  

A Moore machine is very similar to a Finite Automaton (FA), with a few key differences:  

• It has no final states.  

• It does not accept or reject input, instead, it generates output from input.  

• Moore machines cannot have nondeterministic states.  

Every input gives output not if word belongs to the machine or language like FA 

In each state we stop we print out what inside that state (it's content)  

so the output will be more than input by one because we start with start state and print out it's content before 
we trace the input string  
 

 

 
 
 
 
 
Input string  aaababbaabb 
State  q0q1q2q2q3q1q0q0q1q2q3q0 
Output  000010000010 
 
 
this machine gives 1 after each aab 
  
 aabaabaaababaab 
0001001000100001 

so we use Moore machine as a string recognizer to give us a mark (1) after each substring so we design a 
machine put 0 in all states except the one after the one represent end of substring aba 

The output of the machine contains 1 for each occurrence of the substring aab found in the input string.  

 

H.W. Construct a Moore machine that outputs a binary string that contains a 1 for every double letter 
substring in an input string composed of a’s and b’s. For example if abba is the input string 0010 is the 
corresponding output. 

This machine might be considered 
as a "counting" machine 
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 Input = 0010                               Output=11010 

Mealy machines  

Moore machine M is a 5 tuple M = (Q, A, O, T, F ,s) where  

Q is a finite set of states  
A is the finite input alphabet  
O is the finite output alphabet  
T is the transition function  
F is the output function Q�A  
in addition to the start state or the initial state  

 
output on edge 
same input to output    
 
aaabb 
01110 
 
Mealy machines are finite-state machines that act as transducers or translators, taking a string on an input 
alphabet and producing a string of equal length on an output alphabet. 
Mealy machine does not accept or reject an input string, 
 
 
 
  

 
 
 
 

The machine represented in below, outputs an E if the number of 1s read so far is even and an O if it is odd; 

for example, the translation of 11100101 is OEOOOEEO. 
 
 
 
A Mealy machine that outputs 

E if the number of 1 is even 

  O  if the number of 1 is odd 
 
 
 
Binary inverter 

 
 
 
 
 

There are no accept states in a Mealy machine because it is not a language recogniser, it is an output 
producer. Its output will be the same length as its input.  

 

The following Mealy machine takes the one's 
complement of its binary input. In other words, it flips 
each digit from a 0 to a 1 or from a 1 to a 0. 
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Binary Incrementer  

  

 
 
 
 
 
 
 
 
 
One thing you will notice is the numbering of the 
states. Usually, if there are 3 states, we number them 00, 01, and 10. 
 - the input bit string is a binary number fed in backward 
 - The output string will be the binary number that is one greater and that is generated right to left. 
 - The machine will have 3 states: start, carry and no-carry. The carry state represents the overflow when two 
bits of 1’s are added, we print a 0 and we carry a 1. 
Let the input string be 1011 (binary representation of 11). 
• The string is fed into the machine as 1101 (backwards). 
• The output will be 0011, which when reversed is 1100 and is the 
binary representation of 12. 
• In Mealy machine, output length = input length. Hence, if input were 

1111, then output would be 0000 (overflow situation). 

 

 

Homework:  
Construct a Mealy machine that takes a string of a’s and b’s as input and outputs a binary string with a 1 at 
the position of every second double letter. For example, for ababbaab the machine produces 00001010 

and for the input bbb the output string 011 is produced. 
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Kleene's Theorem 
Any language that can be defined by: Regular expression/ Finite automata/ Transition graph 
Can be defined by all three methods. 
 
Proof 

There are three parts of our proof : 
Part1: every language that can be defined by a FA == can be defined by a TG. 
Part2: every language that can be defined by a TG == can be defined by a RE. 
Part3: every language that can be defined by a RE == can be defined by a FA. 
 

proof of part1 

Every FA is itself a TG. Therefore, any language that has been defined by a FA has already 
been defined by a TG. 
 

proof of part2 

The proof of this part will be by constructive algorithm. This means that we present a 
procedure that starts out with a TG and ends up with a RE that defines the same language. 
 
If we have many start states = become only one 

becomes  
 

 
If we have many final states = become only one 

becomes  
 
 
we are now going to build the RE that defines the same language as TG 
reduce the number of edges or states in each time 
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   becomes   
 
 

  becomes  
 

 becomes  

becomes  
 

 becomes  

 

 
special case :   

                becomes  

 

 

 

our goal: unique start state and unique final state. 
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Example 

Find the RE that defines the same language accepted by the following TG using Kleenes 
theorem. 

 

 

 
 
 
 

 

 
 

RE=(aa+bb)(a+b)*(aa+bb) 
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Example 

Find the RE that defines the same language accepted by the following TG using Kleenes 
theorem. 

 
 
 

 
 
 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

RE= [(aa+bb)+(ab+ba)(aa+bb)*(ab+ba)]* 
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proof of part3 

Rule1: there is a FA that accepts any particular letter of the alphabet. 
There is an FA that accepts only the word �. 

FA accepts only �       FA accepts only a     FA accepts 

a+b  

    

Rule2: if there is a FA called FA1, that accepts the language defined by the regular 
expression r1 and there is a FA called FA2, that accepts the language defined by the regular 
expression r2, then there is a FA calledFA3 that accepts language defined by the regular 
expression (r1+r2). 
 

Example 

We have FA1 accepts all words with a double a in them, and FA2 accepts all words ending 
in b. we need to build FA3 that accepts all words that have double a or that end in b. 
 
FA1 

         
 
FA2 

 
 
FA3 
 

Z1 = x1 or y1 
Z2 = x2 or y1 
Z3 = x1 or y2 
Z4 = x3 or y1 
Z5 = x3 or y2 

 
 

 a b 

-x1 X2 X1 

X2 X3 X1 

+x3 X3 X3 

 a b 

-y1 Y1 Y2 

+y2 Y1 Y2 

 a b 

Z1 Z2 Z3 

Z2 Z4 Z3 

Z3 Z2 Z3 

Z4 Z4 Z5 

Z5 Z4 Z5 
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Example 

 

 
 

 

 
 

z1=x1 or y1 
z2=x2 or y3 
z3=x1 or y2 
z4=x3 or y1 
z5=x1 or y4 
z6=x2 or y4 
z7=x3 or y3 
z8=x3 or y2 
z9=x2 or y2 
z10=x1 or y3 
z11=x3 or y4 
z12=x2 or y1 
 

 
 

 

 a b 

-x1 X2 X1 

x2 X3 X1 

+x3 X3 X3 

 a b 

-+y1 Y3 Y2 

Y2 Y4 Y1 

Y3 Y1 Y4 

Y4 Y2 Y3 

 a b 

-+z1 z2  z3 

z2 Z4 z5 

z3 Z6 z1 

+z4 Z7 Z8 

Z5 Z9 Z10 

Z6 Z8 Z10 

+Z7 Z4 Z11 

Z8 Z11 Z4 

Z9 Z11 Z1 

Z10 Z12 Z5 

+Z11 Z8 Z7 

+Z12 z7 Z3 
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HomeWork 

 
Let FA1 accepts all words ending in a, and let FA2 accepts all words with an odd number of 
letters (odd length). Build FA3 that accepts all words with odd length or end in a using 
Kleene's theorem. 

              
FA1     FA2     

 
 
 
 
 
 
 
 
 
 

HomeWork 

Let FA1 accepts all words ending in a, and let FA2 accepts all words end with b.  
Build FA3 that accepts  FA1+FA2  using Kleene's theorem. 

                
FA1     FA2     
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Rule3: if there is a FA1 that accepts the language defined by the regular expression r1 and a 
FA2 that accepts the language defined by the regular expression r2, then there is a FA3 that 
accepts the language defined by the concatenation r1r2. 
We can describe the algorithm for forming FA3 as follows: 
We make a z state for each none final x state in FA1. And for each final state in FA1 we 
establish a z state that expresses the options that we are continuing on FA1 or are beginning 
on FA2.  
 
 

                                           
 

 

 

 

 

 

 

 

 

 

 
We have to connect (merge) the final state of FA1 with the start state of FA2 to produce new 
state (wich it is not final) 
Example: 

            
Z1=x1 
Z2=x2 
Z3=x3 or y1 
Z4=y2 
But it is not simple like that, so we have to take all possablites  
 

�������������	
�state�
�
�� 
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 Example 

We have FA1 accepts all words with a double a in them, and FA2 accepts all words ending 
in b. we need to build FA3 that accepts all words that have double a and end with b. 
 

FA1             FA2     
 

 
  
 
                

 
 
 
 

Z1= x1 
Z2= x2 
Z3= x3 or y1 
Z4= x3 or y2 or y1  

 
 

                                               
 

                                              
 

                                             
 
 

 

 a B 

-y1 Y1 y2 

+y2 Y1 Y2 

 a B 

-x1 X2 X1 

X2 X3 X1 

+x3 X3 X3 

 a b 

-z1 Z2 Z1 

z2 Z3 Z1 

z3 Z3 Z4 

+z4 Z3 Z4 
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HomeWork 

Let FA1 accepts all words with a double a in them, and let FA2 accepts all words with an 
odd number of letters (odd length). Build FA3 that accepts all words with odd length and 
have double a using Kleene's theorem. 
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Rule4: if r is a regular expression and FA1 accepts exactly the language defined by r, then 
there is an FA2 that will accept exactly the language defined by r*. 
We can describe the algorithm for forming FA2 as follows: 
Each z state corresponds to some collection of x states. We must remember each time we 
reach a final state it is possible that we have to start over again at x1. 
Remember that the start state must be the final state also. 
 
Example 

If  r=a  find  r* 

                        
 
 
 
 

 

 

 

Example 

If  r=ab  find  r* 
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Example 

If we have FA1 that accepts the language defined by the regular expression:  r=a*+aa*b 
We want to build FA2 that accept the language defined by r*. 
Note: We will try to connect the final state with start state. 
 

 
 
z1=x1 
z2=x4 
z3=x2 or x1 
z4=x1 or x3 or x4  
z5=x1 or x2 or x4  
 
 
 

 
 
 

 

 

 

 

 

 

 

 a b 

-+x1 X2 X4 

X2 X2 X3 

X3 X4 X4 

X4 X4 X4 

 a b 

-+z1 Z3 Z2 

Z2 Z2 Z2 

+z3 Z3 Z4 

+z4 Z5 Z2 

+z5 Z5 Z4 
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Example 

Find FA2 that accept the language defined by r1* using Kleene's theorem. r1= aa*bb* 

                      
z1=x1 
z2=x2 
z3=x3 

 

z4=x1 or x4 
 
 
 

 

 

z5=x2 or x3 
z6=x1 or x3 or x4 

 

 

 

 

 

 

 
��
��
��
��

 

 

 

 

 

 

 

 

 

 a b 

-x1 X2 X3 

X2 X2 X4 

X3 X3 X3 

+X4 X3 X4 
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Problems 
For the following transition graphs, find regular expression  

��

��

��

��

��
��

 
Consider following FA 

��
��

Find  

        r1+r2 r2 + r3  r1r2 r1r3 r2r1 r1r1 (r1)* (r2)* (r1+r2)* (r1r2)* 
 (r2r1)* 

• is r1r2 = r2r1    why ? 

• is r1 + r2 = r2 + r1  why ? 

• is r1r1 = (r1)* why ? 

 



   Theory of Computation   35                                                                                Hassan Kassim Mohammad 
 

Mustansiriya University – college of sciences – computer science department – second class 

Grammars 
A grammar is a set of rules which are used to construct a language (combine words to generate sentences). 
 
Sentence = noun  verb  noun 
Verb       = went, eat, reading 
Noun      = lesson, boy, school, book 
 
                  Boy reading book 
 
may be there are sentences have no meaning   =  book reading boy 
���%=��
	3�>$'��2��$	&����?�(��������,���@$�;A�B�C� 
 

G=(N, T, S, P)  

N= set of nonterminal symbols (parts of speech (sentence, noun, verb, …))ex: S $%#$,� ����	�2���9$%A������D2�*
8��EF 
T= set of terminal symbols (words, or  symbols in) ex: a $%#$,� ����	��)2���9$%A�8��G7�D2�*   
S= start symbol  non-terminal used to start every derivation. 
P= set of productions.  

 
  

Example 
productions:                  S → a S 

                 S → � 

����������	
S ��
������	�
����

The derivation for aaaa is: 
        S  => aS 

=> aaS 
=> aaaS 
=> aaaaS 

            => aaaa� = aaaa 
RE= a+ 
 

Example 
productions: S → SS 

S → a 

S → � 

����	����������������	��	����
�  � S → SS / a / � 

Derivation of aa  
        S => SS 

=> SSS 
=> SSa 
=> SSSa 
=> SaSa 
=> �aSa 
=> �a�a = aa 

 

 

Start terminal nonterminal 
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Example 
 S → aS | bS | a | b 

Derive abbab  
        S  => aS 

=> abS 
=> abbS 
=> abbaS 
=> abbab 

 

Example 
S � aA / bB 
A � aS / a 
B � bS / b 
Find   bbaaaa 
 

Leftmost and rightmost derivation  LMD RMD 
The leftmost nonterminal (LMN) in a working string is the first nonterminal that we encounter when 

we scan the string from left to right. 

S → aS | ab 
         S => aS 

S => aaS 
S => aaaS 
S => aaaaS 
S => aaaaab 

 

Example 
Consider the Grammar G = (X, T, R, S) with X = {S, A, B, a, b}, T = {a, b} and productions 
 S � AB 
 A � Aa | a 
 B � bBa | ba 

 

Example 
 S � E 
 E � E + T | T 
 T � T*F | F 
 F � (E) | id 

 

 

 

 

Converting Grammar into Regular Expression 
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Chomsky Normal Form CNF 

Context free grammar (CFG) is the most important type of grammars because it is context 
free i.e. the right hand side is contains anything from terminal and nonterminal so that it is 
widely using in the programming languages to represent the language rules and grammars. 
It will be difficult to deal with this type of grammars because the right hand side contains 
everything of terminals/nonterminals, so Chomsky introduced a new formula for constrain 
this grammar to be :   
The right hand side of a rule consists of:  t / NN  like the following grammar :  

S → AB / BA / � 

A → AA / a 

B → BB / b 

Nonterminal →→→→ Nonterminal Nonterminal       or      Nonterminal →→→→ terminal 
 
The conversion takes place in four stages. 
Introduce a new start variable if the start in the right side. 
1. Eliminate lambda 
2. Eliminate all unit-rules: rules of the form A � B 
3. Change the terminals into nonterminals  
4. Reduce rules with more than tow nonterminals into tow nonterminals 
��
Example: Convert the following grammar into CNF: 

S  → ASA | aB 

A →  B | S 

B → b | � 
 

S’ → S  

S  → ASA | aB 

A →  B | S 

B → b | � 
 
Remove all epsilon productions, except from start variable. B ->e 

S’ → S  

S  → ASA | aB | a 

A →  B | S | � 

B → b | � 
 
Remove all epsilon productions, except from start variable. A -> � 

S’ → S  

S  → ASA | aB | a | SA | AS | S 

A →  B | S | � 

B → b  
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Remove unit variable productions of the form S -> S  

S’ → S | ASA | aB | a | SA | AS  

S  → ASA | aB | a | SA | AS | S 

A →  B | S  

B → b  
 
Remove unit variable productions of the form S’ -> S  

S’ →  S| ASA | aB | a | SA | AS  

S  →   ASA | aB | a | SA | AS  

A →   B | S  

B →  b  
 
Remove unit variable productions of the form A -> B  

S’ →  S| ASA | aB | a | SA | AS  

S  →   ASA | aB | a | SA | AS  

A →   B | S | b 

B →  b  
 
Remove unit variable productions of the form A -> S  

S’ →  S| ASA | aB | a | SA | AS  

S  →   ASA | aB | a | SA | AS  

A →  S | b | ASA | aB | a | SA | AS  

B →  b  
 

S’ →  S| ASA | aB | a | SA | AS  

S  →   ASA | aB | a | SA | AS  

A →  S | b | ASA | aB | a | SA | AS  

B →  b  
 
Add variables and dyadic variable rules to replace any longer productions. 

S’ →  AA1 | UB | a | SA | AS  

S  →   AA1 | UB | a | SA | AS  

A  →  b | AA1 | UB | a | SA | AS  

A1→  SA 

U → a  

B →  b  
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Example: Convert the following grammar into CNF: 

S →→→→ bA | aB 

A →→→→ a | aS | bAA 

B →→→→ b | bS | aBB 

Step1:  no lambda 
Step2: no unit production 
Step3: convert small into capital 

S →→→→ YA / XB 

A →→→→ a / XS / YAA 

B →→→→ b / YS / XBB 

X →→→→ a 

Y →→→→ b 

Step4: convert more than 2 nonterminal into 2 nonterminal 

S →→→→ YA | XB 

A →→→→ a | XS | YR1 

B →→→→ b | YS | XR2 

X →→→→ a  

Y →→→→ b 

R1 →→→→ AA  

R2 →→→→ BB 

Example: Convert the following grammar into CNF: 
       S � aSaS / SaSb / ���
       
       S � SaS/SaSb/a/Sa/aS/ab/Sab/aSb               1��
��
       S � SAS/SASB/a/SA/AS/AB/SAB/ASB     3 
       A�a 
       B�b 

 
       S � SR1/SR2/a/SA/AS/AB/SR4/AR3          4 
       R1� AS 
       R2� AR3 
       R3� SB 
       R4� AB 
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Example 

            E  →→→→ E + T | E – T | T 

 T  →→→→ T*F | T/F | F 

 F  →→→→ (E) | id 

 Id →→→→ a | b | c  

Then the string (a + b)*c belongs to above grammar and the derivation of this string:  

E →→→→ T 

   →→→→ T * F 

   →→→→ F * F 

   →→→→ (E) * F 

   →→→→ (E + T) * F 

   →→→→ (T + T) * F 

   →→→→ (F + T) * F 

   →→→→ (id + T) * F 

   →→→→ (a + T) * F  

   →→→→ (a + F) * F 

   →→→→ (a + id) * F 

   →→→→ (a + b) * F  

   →→→→ (a + b) * id 

   →→→→ (a + b) * c 

 
Derivation can also be nicely represented in a tree form, as bellow 
Derivation Tree for the Expression (a + b)*c 
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The internal nodes of the derivation, or syntax, tree are nonterminal symbols and the frontier of the tree 
consists of terminal symbols. The start symbol is the root and the derived symbols are nodes. The string      
(a + b)*c obtained from the concatenation of the leaf nodes together from left to right.  

A correct parse of the string a + b*c as a sequence of shift/reduce actions is given bellow. 

Parse of the expression a + b*c  

Stack Input Action 

$ a + b*c$ Shift 

id$ + b*c$ Reduce 

F$ + b*c$ Reduce 

T$ + b*c$ Reduce 

E$ + b*c$ Reduce 

+ E$ b*c$ Shift 

b + E$ *c$ Shift 

id + E$ *c$ Reduce 

F + E$ *c$ Reduce 

T + E$ *c$ Reduce 

*T + E$ c$ Shift 

c*T + E$ $ Reduce 

id*T + E$ $ Reduce 

F*T + E$ $ Reduce 

T + E$ $ Reduce 

E$ $ Accept 
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Derivations and Parse Trees 

 For every derivation there is a unique corresponding parse tree. 
 A derivation is a leftmost derivation if the variable chosen for substitution, at any step, is the 
leftmost variable. 
 

E → E + T | E – T | T   we can write this grammar as:E →E + E | E – E | E * E | E / E | id 

T →  T * F | T / F | F 

F →  id 
Derive  id + id * id 

E →  E + T 

  →  T + T  

  →  F + T  

  →  id + T  

  →  id + T * F 

  →  id + F * F 

  →  id + id * F 

  →  id + id * id 

The parse tree of an input sequence according to a CFG is the tree of derivations. For 
example, the parse tree of id(x) + num(2) * id(y) is:  

        E 
     /   |   \ 
   E   +    T 
    |         /  |  \ 
   T       T  *   F 
    |        |         | 
   F       F       id 
    |        | 
   id     num 
 
So a parse tree has non-terminals for internal nodes and terminals for leaves.  
There are tow types of parsing or derivation:  
Top down parsing   and  Bottom up parsing  
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Top-down parsing starts from the start symbol of the grammar S and applies derivations until 
the entire input string is derived (ie, a sequence of terminals that matches the input tokens). 
For example,  

E → E + T 

  → T + T  

  → F + T 

  → i + T 

  → i + T * F 

  → i + F * F 

  → i + i * F 

 → i + i * i 
Which matches the input sequence i + i * i ��

Bottom-up parsing starts from the input string and uses derivations in the opposite directions 
(ie, by replacing the right hand side sequence of a production with the nonterminal. It stops 
when it derives the start symbol. For example,  

     i + i * i 

→ F + i * i 

→ T + i * i 

→ E + i * i 

→ E +  F * i 

→ E + T * i 

→ T * T 

→ E * T 

→ E 
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Ambiguity 
A CFG is ambiguous if it generates some string with more than one parse tree. 
 A grammar is ambiguous if it has more than one parse tree for the same input sequence. 
For example, the grammar G3 is ambiguous since it has two parse trees. 
A string w is derived ambiguously in CFG G if it has two or more leftmost derivations. 

Suppose, that the rules of the expression grammar were written E →E + E  |  E*E  |  id, then 

two different syntax trees are the result. If the first production E →E + E were chosen then 

the result would be the tree on the left, On the other hand, choosing the production E →E*E  
first results in a syntax tree of an entirely different  

                          
Thus this grammar is ambiguous, because it is possible to generate two different syntax trees 
for the expression a + b*c. 
Exercises: Convert the following grammars into CNF: 

1. S →HaSa | bSb | a | b | aa | bb 

2. S →bA | aB 

    A →HbAA | aS | a  

    B → HaBB | bS | b 

3. S→HAba 

    A →Haab 

    B → HAC 

4. S →H0A0 |1B1 | BB 

    A →HC 

    B → HS|A 

    C → HS| � 

5. S →HaAa | bBb| �  

    A →HC|a 

    B → HC | b 

    C → HCDE | � 

    D →HA | B | ab 
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6.    SIabAB, 
       AIbAB|A, 
       BI BAa|A|�, 
7.      SIAB|aB 
         AIaab|� 
         BIbbA 
1-   SIaSb|ab. 
             2-  SIaSaA|A 
                  AIabA|b��

. 
             3- SIabAB, 
                 AIbAB|A, 
                 BI BAa|A|�, 

5.S → HaAD  

A → aB | bAB  

B → b  

D → d 

6.         S → Aa | B   

         B → A | bb   

         A → a | bc | B��

7.S → ASB | �  

A → HaAS | a  

B → SbS | A | bb 
8. Show a derivation tree for the string aabbbb with the grammar 
         S I AB|x 
         AI aB 
         BI Sb 
9. with the following grammar Derive   1+(0+(1+0)-1) 

            N →  N – N / N + N / (N) / D��
            D →  0/1 
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The Chomsky Hierarchy  

Noam Chomsky introduced the Chomsky hierarchy which classifies grammars and languages. This hierarchy 
can be amended by different types of machines (or automata) which can recognize the appropriate class of 
languages.  

In the late fifties Noam Chomsky, a linguist at MIT, was investigating the relationship between the syntactic 
structure of languages and the meaning (semantics) of statements in a language. 

 The Chomsky hierarchy comprises four types of languages and their associated grammars and machines.  

Type Language Grammar Machine Example 

Type 3 Regular language Regular grammar RG 
Finite Automata   

FA 
a*b* 

Type 2 Context free language Context-free grammar CFG 
Pushdown automaton 

PDA a b  

Type 1 
Context sensitive 
language 

Context sensitive grammar 
CSG 

Linear bounded automaton  
LBA a b c  

Type 0 
Recursively 
enumerable language 

Unrestricted grammar UG  
Turing machine  

TM 

any 
computable 
function 

 
regular languages context-free languages context-sensitive languages recursive enumerable 

languages.  
Type 3   type2    type1    type0 
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Type 3: 

regular grammars generate the regular languages. Such aiii grammar restricts its rules to a single 
nonterminal on the left-hand side and a right-hand side consisting of a single terminal, possibly followed by 
a single nonterminal. The rule S I � is also here allowed if S does not appear on the right side of any rule. 
These languages are exactly all languages that can be decided by a finite state automaton. Additionally, this 
family of formal languages can be obtained by regular expressions. Regular languages are commonly used to 
define search patterns and the lexical structure of programming languages.  

N ���� t/tN 

A� a/aB 

S� aS/b 
Problem is left recursion A � Aa 

 

Type 2: 

 context-free grammars generate the context-free languages. These are defined by rules of the form  
A I J with A a nonterminal and J a string of terminals and nonterminals. These languages are exactly all 
languages that can be recognized by a non-deterministic pushdown automaton. Context free languages are 
the theoretical basis for the syntax of most programming languages.  

S ���� (N U t)* 

S� SS/aA/bA 
S�� 
S�abB 

 

Type 1: 

context-sensitive grammars generate the context-sensitive languages. These grammars have rules of 
the form KAL I KJL with A a nonterminal and K, L and J strings of terminals and nonterminals. The strings K 
and L may be empty, but J must be nonempty. The rule S I M is allowed if S does not appear on the right 
side of any rule. The languages described by these grammars are exactly all languages that can be recognized 
by a non-deterministic Turing machine whose tape is bounded by a constant times the length of the input.  

U����V   U,V (N U t)+ 

S�SS 
aA�bAa 
BB�aB 
A� �   wrong 
Left side <= right side 

 

Type 0:  
unrestricted grammars include all formal grammars. They generate exactly all languages that can be 

recognized by a Turing machine. The language that is recognized by a Turing machine is defined as all the 
strings on which it halts. These languages are also known as the recursively enumerable languages. Note that 
this is different from the recursive languages which can be decided by an always halting Turing machine. 

U����V   U,V (N U t)* 

S�SS 
S�aAb 
aA�Aa 
BB� a 
aA�bAa 
Ba�bAb 
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Push Down Automata PDA 

 
PDA consists of 7 components (7-tuple):  
M = (Q, Sigma, Gamma, delta, q0, Z0, F)  where 
 
Q = a finite set of states  
Sigma = a finite alphabet of input symbols (input tape) 
Gamma = a finite set of push down stack symbols 
Delta = a group of transitions    
q0 = the initial state 
Z0 = the initial stack contents - stack symbol N 
F = the set of final, accepting, states 
 
It is the machine that accepts CFG languages, the most important form is  anbn , n>=1 i.e  there is a relation 
between exponents of both variables and it is gives strings like  aaabbbN,  aaaaabbbbbN ,  aaaaxaaaaN, abbcbbaN  
Consist of basic shapes to represent PDA like triangle, diamond, trapezoidal … 
 
 
 
 
The START symbol just points to the start state  
The ACCEPT symbol represents a final state or accept  
The REJECT symbol represents a reject state or error  
 

Some of states are decision state; it is represent every function performed in a state by a different type of 
box. The typical task performed in a state is to "read and branch" which will now be represented by a 
diamond shaped box, such as: 

 

 

 

 

 
 
 
 
Then we have two main operations either push the input string into the stack or pop it from the stack depending 
on the reading string  We need a type of memory  which is the stack  (First In Last Out) contain N simple to 
represent the empty stack 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

N 

 

 

 

a 

N 

 

 

a 

a 

N 

 

a 

a 

a 

N 

ACCEPT REJECT 

PUSH 

POP 

START 

 

READ��
a ���b���

N 
���
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We have to push the first part of string into the stack and then pop contents of the stack when we start 
reading the second part of the string 
For example aaabbbN  We will push all "aaa" into the stack   then we will pop when we start reading "bbb" 
We can divide string reading into tow stages  
When we get the first part "aaa" we will push them into the stack 
and when we read the second part "bbb" we will pop from the stack, we should get "aaa" and the stack will 
be empty and the string is reached to the space symbol  
so if we read the space symbol we have to pop from the stack, if we got space symbol that is means the 
string is accepted 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tracing the input string on the PDA 
We will trace and witching 3 variables state, stack and the tape (input string)  

For example: trace aaabbbN on the PDA  a n b n   n>=1  
 

 

 

State    Stack    Tape        

START        N  aaabbbN 
READ     N  aaabbbN 
PUSH    aN  aaabbbN 
READ    aN  aaabbbN 
PUSH   aaN  aaabbbN 
READ   aaN  aaabbbN 
PUSH  aaaN  aaabbbN 
READ  aaaN  aaabbbN 
POP   aaN  aaabbbN 
READ   aaN  aaabbbN 
POP    aN  aaabbbN 
READ    aN  aaabbbN 
POP     N  aaabbbN 
READ     N  aaabbb� 
POP     -  aaabbb� 
ACCEPT  

��
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��

���
�	���
� PDA�����	���RE���� ��
�!��"�"#��
���$������� ����"����%&��� �
���'(���%&�'(���������

 Example:  a�

��

��

��

 
Example  a + b 
 
 
 

 

Example  (a + b)* 
 
 

 

 

Example  a* b 
 

 

 

 

Example  a b* 
 

 

��
 
����
 

 
 
 
 
 
 

 

 

H.W. Design a PDA for  a*b* 
 

H.W. Design a PDA for  a n b n   n>=1 
 
H.W. Design a PDA for  ca db a   n>=1 

 
H.W. a  b c d    n>=1 

 
H.W. a b c d     n,m>=1 
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Palindrome  

We can design a PDA to check the odd palindrome (string can be read from right or left) RADAR, MADAM 
We will use X as a mark to distinguish the middle of the string  
We will push all letters of the first part before X  
 
 
Read x with no action 
Then we will pop the contents of stack  
Check it with the tape, if it is same  
We continue pop and read,  

Until we get N then we will pop  

One time if it is N so we reached  
ACCEPT state  else go to Reject state 
 
 
 
 
 

 

 

 

Example :  aabaXxabaaN 

 
 

State    Stack    Tape        

START        N  aaaxbbbN 
READ     N  aaaxbbbN 
PUSH    aN  aaaxbbbN 
READ    aN  aaaxbbbN 
PUSH   aaN  aaaxbbbN 
READ   aaN  aaaxbbbN 
PUSH  aaaN  aaaxbbbN 
READ  aaaN  aaaxbbbN 
READ  aaaN  aaaxbbbN 
POP   aaN  aaaxbbbN 
READ   aaN  aaxabbbN 
POP    aN  aaaxbbbN 
READ    aN  aaaxbbbN 
POP     N  aaaxbbbN 
READ     N  aaaxbbb� 
POP     -  aaaxbbb� 
ACCEPT  
 
 

 

 

 

 

����������	
���X��
�����������������
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Non deterministic palindrome NPDA 
Here there is no distinguish mark,  
but our palindrome is odd  
(there is (a or b) in the middle)   
so we will push all letters (a and b) 
and then read one (a or b) 
then continue reading the tape  
and pop from the stack  
until we get N  

 
 
 
 
 
 
 
 
 

H.W.  

Trace the string   abbababbaN  on the above PDA  
 

State    Stack    Tape        

START        N  abbababbaN 
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H.W.    a n  b n  n>=1  ����  aaaaaabbbN 

 

 
 

 

 

State    Stack    Tape        

START        N  aaaaaabbbN 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H.W.  

Design a PDA for  a2nbnamb2m  n,m>=1 
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Turing Machine, TM  

  A Turing machine is defined by  M = (Q, Sigma, Gamma, delta, q0, B, F)  where 
 Q = finite set of states including q0 
 Sigma = finite set of input symbols not including B 
 Gamma = finite set of tape symbols including Sigma and B 
 delta = transitions mapping  Q x Gamma to Q x Gamma x {L,R} 
 q0    = initial state 
 B     = blank tape symbol, initially on all tape not used for input 
 F     = set of final states 
 
M = ( Q, Sigma, Gamma, delta, q0, B,  F) 
 
 

�?��A�
,-�&��O��#��5%-�+2��)$*�
� �P&��$%	0��Q�'��A�B�C�2��$����2���	�&��R�;����Q�'��(�$%-��2�1$�����$%�9��,+�:�	�(�����/S2
�T$
()���S�U�$.��2�@���)���S�/A$.��2�1$��)��
.	��12)�������G����V�V�$%�&� 

,EA�2����EF�D�*�P���T���G�+�W�,A2�D�;���8>��,+�W�,A2�$��&��2����	�&��X
�A2���S�$	F�X�  
 
It is designed to solve 3 or more of letters with same no of  letters  abc …. And it can be designed for any 
type of grammars  
Read   write    direction  
Input  output  direction 
Tape   same/different  R/L 
 
 
 
 
 
 
 
 
 
 
 
         
 
     (a+b)b(a+b)* 
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     a
n

b
n

 , n>=1      aaabbbY 
 

 
 
 
 
 
 
 
 
 
 

Palindrome       aabaabaaY 
�$����2���	�������$%(>��#���	��
S��	&��������F$�A�Z�����A�$-S��

A$.��2����)��Q��D�*�12���� $�+�W�,-0�U�*�C�S2����)��
E#�Q��/��
��

 
 

 

H.W.  

Design a Turing machine for    a
n

b
n

c
n

   ,n>=1  
  

State  tape 
Start  aaabbbY 
2  AaabbbY 
2  AaabbbY 
2  AaabbbY 
3  AaaBbbY 
4  AaaBbbY 
Start  AaaBbbY 
  AaaBbbY 
  AAaBbbY 
   
  . 
  . 
  . 
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