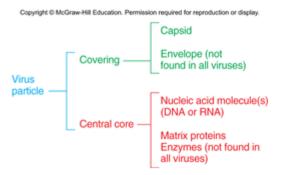
Lecture 7

An Introduction to Viruses

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

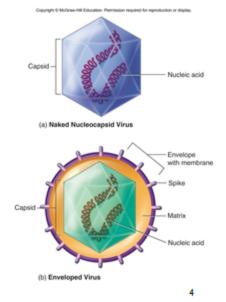

TABLE 6.1 Properties of Viruses

- Obligate intracellular parasites of bacteria, protozoa, fungi, algae, plants, and animals
- Ultramicroscopic size, ranging from 20 nm up to 450 nm (diameter)
- · Not cellular in nature; structure is very compact and economical.
- · Do not independently fulfill the characteristics of life
- Inactive macromolecules outside the host cell and active only inside host cells
- Basic structure consists of protein shell (capsid) surrounding nucleic acid core.
- · Nucleic acid of the viral genome is either DNA or RNA but not both.
- Nucleic acid can be double-stranded DNA, single-stranded DNA, single-stranded RNA, or double-stranded RNA.
- Molecules on virus surface impart high specificity for attachment to host cell.
- Multiply by taking control of host cell's genetic material and regulating the synthesis and assembly of new viruses
- · Lack enzymes for most metabolic processes
- · Lack machinery for synthesizing proteins

Copyright D McGraw-HI Education. All rights reserved. No regraduction or distribution, without the grior written consent of McGraw-HI Education.

Viral Structure

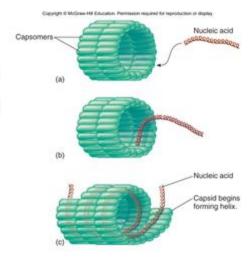
- Viruses bear no resemblance to cells
 - Lack protein-synthesizing machinery
- Viruses contain only the parts needed to invade and control a host cell



Copyright © McGraw-Hii Education. All rights reserved. No regroduction or distribution without the prior written consent of McGraw-Hii Education.

General Structure of Viruses

Capsids

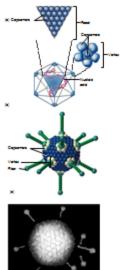

- All viruses have capsids (protein coats that enclose and protect their nucleic acid)
- The capsid together with the nucleic acid is the nucleocapsid
- Some viruses have an external covering called an envelope; those lacking an envelope are naked
- Each capsid is made of identical protein subunits called capsomers

Copyright D McGraw-Hill Education. All rights reserved. No regroduction or distribution without the grior written consent of McGraw-Hill Education.

General Structure of Viruses

- Two structural capsid types:
 - Helical continuous helix of capsomers forming a cylindrical nucleocapsid
 - Icosahedral

5

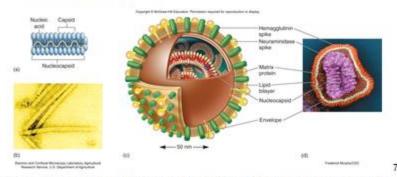

Copyright D McGraw-Hill Education. All rights reserved. No regroduction or distribution without the grior written consent of McGraw-Hill Education.

General Structure of Viruses

Two structural

- capsid types:

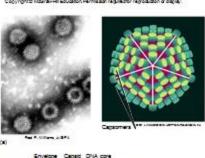
 Helical -
- Icosahedral -20-sided with 12 corners

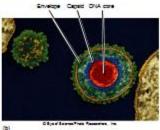

6

Copyright D McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

General Structure of Viruses

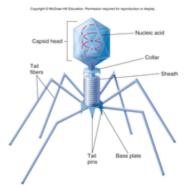
Viral envelope

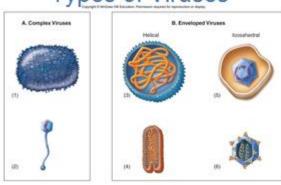

- Mostly animal viruses
- Acquired when the virus leaves the host cell
- Exposed proteins on the outside of the envelope, called **spikes**, are essential for attachment of the virus to the host cell

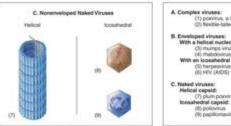


Copyright D McGraw-Hill Education. All rights reserved. No regroduction or distribution without the prior written consent of McGraw-Hill Education.

Functions of Capsid/Envelope


- Protects the nucleic acid when the virus is outside of the host cell
- Helps the virus bind to a cell surface and assists the penetration of the viral DNA or RNA into a suitable host cell


General Structure of Viruses


- · Complex viruses: atypical viruses
 - Poxviruses lack a typical capsid and are covered by a dense layer of lipoproteins
 - Some bacteriophages have a polyhedral nucleocapsid along with a helical tail and attachment fibers

Copyright © McGraw-Hii Education. All rights reserved. No regroduction or distribution without the prior written consent of McGraw-Hii Education.

Types of Viruses

Consider C. McConsulti Counting, 21 debts response. No record cline or deletation within a like over united consent of McConsulti Counting

Nucleic Acids

- Viral genome either DNA or RNA but never both
- Carries genes necessary to invade host cell and redirect cell's activity to make new viruses
- Number of genes varies for each type of virus few to hundreds

Copyright C McGraw-HI Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-HI Education.

Nucleic Acids

- DNA viruses
 - Usually double stranded (ds) but may be single stranded (ss)
 - Circular or linear
- RNA viruses
 - Usually single stranded, may be double stranded, may be segmented into separate RNA pieces
 - ssRNA genomes ready for immediate translation are positive-sense RNA
 - ssRNA genomes that must be converted into proper form are negative-sense RNA

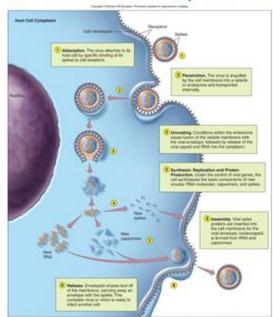
General Structure

- · Pre-formed enzymes may be present
 - Polymerases DNA or RNA
 - Replicases copy RNA
 - Reverse transcriptase synthesis of DNA from RNA (AIDS virus)

1: Copyright D McGraw-Hil Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hil Education.

How Viruses Are Classified

- Main criteria presently used are structure, chemical composition, and genetic makeup
- Currently recognized: 3 orders, 63 families, and 263 genera of viruses
- · Family name ends in -viridae, i.e.Herpesviridae
- · Genus name ends in -virus, Simplexvirus
- Herpes simplex virus I (HSV-I)

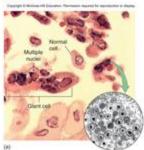

Modes of Viral Multiplication

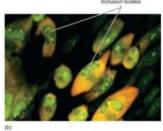
General phases in animal virus multiplication cycle:

- Adsorption binding of virus to specific molecules on the host cell
- 2. Penetration genome enters the host cell
- Uncoating the viral nucleic acid is released from the capsid
- 4. Synthesis viral components are produced
- 5. Assembly new viral particles are constructed
- Release assembled viruses are released by budding (exocytosis) or cell lysis

Copyright © McGraw-Hill Education. All rights reserved. No regroduction or distribution without the prior written consent of McGraw-Hill Education.

Animal Virus Multiplication




McGraw-Hill Education. All rights reserved. No regroduction or dainbutton without the grior written consent of McGraw-Hill Education.

Damage to Host Cell

Cytopathic effects - virusinduced damage to cells

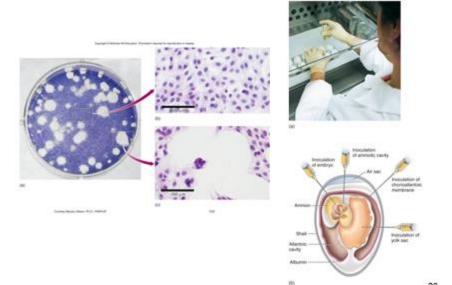
- Changes in size and shape
- Cytoplasmic inclusion bodies
- Inclusion bodies
- Cells fuse to form multinucleated cells
- Cell lysis
- Alter DNA
- Transform cells into cancerous cells

CAM, Rome, Into

20

Copyright D McGraw-Hil Education. All rights reserved. No regroduction or distribution without the grior written consent of McGraw-Hill Education.

Multiplication Cycle in Bacteriophages


- Bacteriophages bacterial viruses (phages)
- Most widely studied are those that infect Escherichia coli – complex structure, DNA
- Multiplication goes through similar stages as animal viruses
- Only the nucleic acid enters the cytoplasmuncoating is not necessary
- Release is a result of cell lysis induced by viral enzymes and accumulation of viruses lytic cycle

Techniques in Cultivating and Identifying Animal Viruses

- Obligate intracellular parasites that require appropriate cells to replicate
- · Methods used:
 - Cell (tissue) cultures cultured cells grow in sheets that support viral replication and permit observation for cytopathic effects
 - Bird embryos incubating egg is an ideal system; virus is injected through the shell
 - Live animal inoculation occasionally used when necessary

2

Methods for Growing Viruses

Copyright D McGraw-Hill Education. All rights reserved. No regroduction or detribution without the prior written consent of McGraw-Hill Education.

Medical Importance of Viruses

- Viruses are the most common cause of acute infections
- Several billion viral infections per year
- Some viruses have high mortality rates
- Possible connection of viruses to chronic afflictions of unknown cause
- Viruses are major participants in the earth's ecosystem

Detection and Treatment of Animal Viral Infections

- · More difficult than other agents
- · Consider overall clinical picture
- · Take appropriate sample
 - Infect cell culture look for characteristic cytopathic effects
 - Screen for parts of the virus
 - Screen for immune response to virus (antibodies)
- · Antiviral drugs can cause serious side effects