Cloud Physics Lab LAB 10: Rain Size Distribution

Purpose:

Study the rain size distribution

Theory:

The best way to characterize rain reaching the ground is through drop-size distribution.

<u>Drop-Size distribution</u> Number of drops per unit size interval per unit volume. Size interval is usually diameter (or radius)

How do we mathematically represent this drop-size distribution?

<u>The Marshall-Palmer Drop-size Distribution</u> Raindrop size distribution are often given by the *Marshall-Palmer* distribution,

$$n_d = n_o e^{-\Lambda D} \tag{1}$$

where n_0 is called the intercept parameter, and Λ is called the slope factor.

The intercept factor is a constant, and is often given a value of $n_o = 0.08 \text{ cm}^{-4}$ or (8000 m⁻³ mm⁻¹).

Empirically, the slope factor has been found to depend on rainfall rate via

$$= 4.1R^{-0.21} \tag{2}$$

where R has units of mm/hr and Λ has units of mm⁻¹.

Methodology

- 1- Run the Matlab script *LAB10.m* to plot the Marshall-Palmer rain size distribution for rainfall rates 2, 5, and 25 mm/hr.
- 2- From the plot extract the data for droplet diameters 0.2, 0.4, 0.6, 0.8, 1.0 mm.

Rain drop diameter	Rainfall rate (mm/hr)		
(mm)	2	5	25
0.2			
0.4			
0.6			
0.8			
1.0			

3- Discuss your results