

Foundation of Mathematics I Chapter 4 Functions

Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

Chapter Four

Functions

Definition 4.1. A **function** or a **mapping** from A to B, denoted by $f: A \to B$ is a relation f from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation. That is, each $a \in A$ the relation f contains exactly one ordered pair of form (a, b).

Equivalent statements to the function definition.

(i) A relation f from A to B is function iff

$$\forall x \in A \exists ! y \in B \text{ such that } (x, y) \in f$$

(ii) A relation f from A to B is function iff

$$\forall x \in A \ \forall y, z \in B$$
, if $(x, y) \in f \ \land (x, z) \in f$, then $y = z$.

(iii) A relation f from A to B is function iff

$$(x_1, y_1)$$
 and $(x_2, y_2) \in f$ such that if $x_1 = x_2$, then $y_1 = y_2$.

This property called **the well-defined relation**.

Example 4.2.

- (i) Let $A = \{1, 2, 3, 4\}$ and $B = \{2, 4, 5\}$.
- (1) $R_1 = \{(1,2), (2,4), (3,4), (4,5)\}$ function from A to B.
- (2) $R_2 = \{(1,2), (2,4), (2,5), (4,5)\}$ not a function.
- (3) $R_3 = \{(1,2), (2,4), (4,5)\}$ function from $\{1,2,4\}$ to B.
- (4) $R_4 = A \times B$ not a function.
- (ii) Consider the relations described below.

Relation	Orderd pairs	Sample Relation	
1	(person, month)	$\{(A, May), (B, Dec), (C, Oct),\}$	
2	(hours, pay)	$\{(12,84),(4,28),(6,42),(15,105),\ldots\}$	
3	(instructor, course)	$\{(A, MATH001), (A, MATH002), \dots\}$	
4	(time, temperature)	$\{(8,70^\circ), (10,78^\circ), (12,78^\circ), \dots\}$	

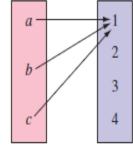
The first relation is a function because each person has only one birth month. **The second** relation is a function because the number of hours worked at a particular job can yield only one paycheck amount.

The third relation is not a function because an instructor can teach more than one course.

The fourth relation is a function. Note that the ordered pairs (10, 78°), (12, 78°) do not violate the definition of a function.

(iii) Decide whether each relation represents a function.

a. Input: *a*, *b*, *c*Output: 2, 3, 4
{(*a*, 2), (*b*, 3), (*c*, 4)}



c.

Input	Output

Input x	Output	(x, y)
3	1	(3, 1)
4	3	(4, 3)
5	4	(5, 4)
3	2	(3, 2)

Solution.

- **a.** This set of ordered pairs does represent a function. No first component has two different second components.
- **b.** This diagram does represent a function. No first component has two different second components.
- **c.** This table does not represent a function. The first component 3 is paired with two different second components, 1 and 2.

Notation 4.3. We write f(a) = b when $(a, b) \in f$ where f is a function. We say that b is the **image** of a under f, and a is a **preimage** of b.

Definition 4.4. Let $f: A \to B$ be a function from A to B.

- (i) The set A is called the **domain** of f, (D(f)), and the set B is called the **codomain** of f.
- (ii) The set $f(A) = \{f(x) \mid x \in A\}$ is called the **range** of f(R(f)).

Remark 4.5.

- (i) Think of the domain as the set of possible "input values" for f.
- (ii) Think of the range as the set of all possible "output values" for f.

Example 4.6.

(i) Let
$$A = \{p, q, r, s\}$$
 and $B = \{0,1,2\}$ and $f = \{(p, 0), (q, 1), (r, 2), (s, 2)\} \subseteq A \times B$.

This is a function $f: A \to B$ because each element of A occurs exactly once as a first coordinate of an ordered pair in f.

We have f(p) = 0, f(q) = 1, f(r) = 2 and f(s) = 2. The domain of f is A, and the codomain and range are both B.

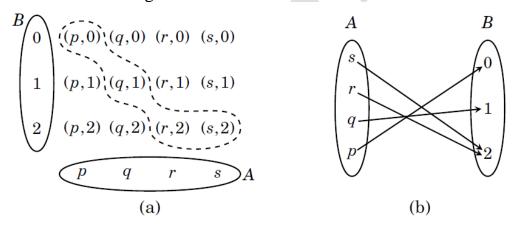


Figure. Two ways of drawing the function $f = \{(p,0), (q,1), (r,2), (s,2)\}$

(ii) Say a function $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is defined as f(m, n) = 6m - 9n. Note that as a set, this function is

$$f = \{((m, n), 6m - 9n): (m, n) \in \mathbb{Z} \times \mathbb{Z}\} \subseteq (\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z}.$$

What is the range of ?

To answer this, first observe that for any $(m, n) \in \mathbb{Z} \times \mathbb{Z}$, the value

$$f(m,n) = 6m - 9n = 3(2m - 3n)$$

is a multiple of 3. Thus every number in the range is a multiple of 3, so

$$R(f) \subseteq \{3k : k \in \mathbb{Z}\}.$$
 ... (1)

On the other hand if b = 3k is a multiple of 3 we have

$$f(-k, -k) = 6(-k) - 9(-k) = -6k + 9k = 3k$$

which means any multiple of 3 is in the range of f, so

$${3k: k \in \mathbb{Z}} \subseteq R(f).$$
 ... (2)

Therefore, from (1) and (2) we get

$$R(f) = \{3k : k \in \mathbb{Z}\}.$$

Definition 4.7. Two functions $f: A \to B$ and $g: C \to D$ are **equal** if A = C, B = D and f(x) = g(x) for every $x \in A$.

Example 4.8.

- (i) Suppose that $A = \{1,2,3\}$ and $B = \{a,b\}$. The two functions $f = \{(1,a),(2,a),(3,b)\}$ and $g = \{(3,b),(2,a),(1,a)\}$ from A to B are equal because the sets f and g are equal. Observe that the equality f = g means f(x) = g(x) for every $x \in A$.
- (ii) Let $f(x) = (x^2 1)/(x 1)$ and g(x) = x + 1, where $x \in \mathbb{R}$.

$$f(x) = (x-1)(x+1)/(x-1) = (x+1).$$

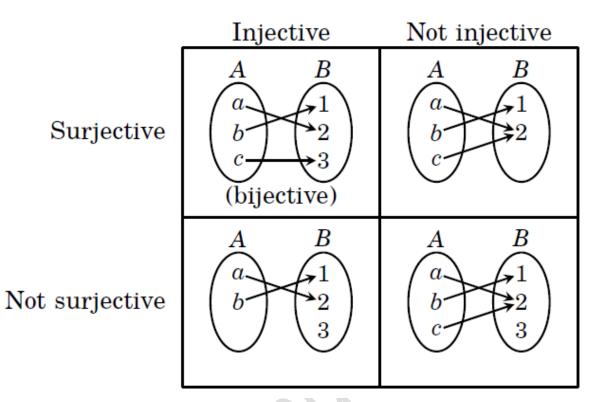
$$D(f) = \mathbb{R} - \{1\}, R(f) = \mathbb{R} - \{2\}.$$

$$D(g) = \mathbb{R}, R(f) = \mathbb{R}.$$

$$f \neq g$$
.

Definition 4.9.

- (i) A function $f: A \to B$ is **one-to-one** or **injective** if each element of B appears at most once as the image of an element of A. That is, a function $f: A \to B$ is injective if $\forall x, y \in A$, $f(x) = f(y) \Rightarrow x = y$ or $\forall x, y \in A$, $x \neq y \Rightarrow f(x) \neq f(y)$.
- (ii) A function $f: A \to B$ is **onto** or **surjective** if f(A) = B, that is, each element of B appears at least once as the image of an element of A. That is, a function $f: A \to B$ is surjective if $\forall y \in B \exists x \in A$ such that f(x) = y.
- (iii) A function $f: A \to B$ is **bijective** iff it is one-to-one and onto.



Example 4.10. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(x) = 3x + 7.

$$f = \{..., (-3, -2), (-2, 1), (-1, 4), (0, 7), (1, 10), (2, 13), ...\}.$$

(i) f is injective. Suppose otherwise; that is,

$$f(x) = f(y) \Rightarrow 3x + 7 = 3y + 7 \Rightarrow 3x = 3y \Rightarrow x = y$$

(ii) f is not surjective. For b=2 there is no a such that f(a)=b; that is, 2=3a+7 holds for $a=-\frac{5}{3}$ which is not in $\mathbb{Z}=D(f)$.

Example 4.11.

(i) Show that the function $f : \mathbb{R} - \{0\} \to \mathbb{R}$ defined as

f(x) = (1/x) + 1 is injective but not surjective.

Solution.

We will use the contrapositive approach to show that f is injective.

Suppose $x, y \in \mathbb{R} - \{0\}$ and f(x) = f(y). This means

 $\frac{1}{x} + 1 = \frac{1}{y} + 1 \longrightarrow x = y$. Therefore f is injective.

Function f is not surjective because there exists an element $b = 1 \in \mathbb{R}$ for which $f(x) = (1/x) + 1 \neq 1$ for every $x \in \mathbb{R}$.

Mustansirivah University

(2018-2019)

(ii) Show that the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined by the formula f(m,n) = (m+n, m+2n), is both injective and surjective. Solution.

Injective: Let $(m,n), (r,s) \in \mathbb{Z} \times \mathbb{Z} = D(f)$ such that f(m,n) = f(r,s). To prove (m, n) = (r, s).

1-
$$f(m,n) = f(r,s) \Rightarrow (m+n,m+2n) = (r+s,r+2s)$$
 Hypothesis
2- $m+n=r+s$ Def. of ×
3- $m+2n=r+2s$ Def. of ×
4- $m=r+2s-2n$ Inf. (3)
5- $n=s$ and $m=r$ Inf. (2),(4)
6- $(m,n) = (r,s)$ Def. of ×

Surjective: Let $(x,y) = \mathbb{Z} \times \mathbb{Z} = R(f)$. To prove $\exists (m,n) \in \mathbb{Z} \times \mathbb{Z} = D(f) \ni$ f(m,n)=(x,y).

1-
$$f(m,n) = (m+n, m+2n) = (x,y)$$
 Def. of f
2- $m+n=x$ Def. of \times
3- $m+2n=y$ Def. of \times
4- $m=x-n$ Inf. (2)
5- $n=y-x$ Inf. (3),(4)
6- $m=-x$ Inf. (2),(5)
7- $(-x,y-x) \in \mathbb{Z} \times \mathbb{Z} = D(f), f(-x,y-x) = (x,y)$

Definition 4.12. The **composition** of functions $f: X \to Y$ with $g: Y \to Z$ is the function $g \circ f: X \to Z$ defined by $(g \circ f)(x) = g(f(x))$.

Remark 4.13.

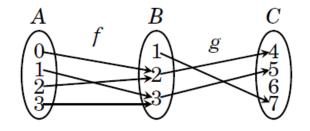
- (i) The composition $g \circ f$ can only be defined if the domain of g includes the range of f; that is, $R(f) \subseteq D(g)$, and the existence of $g \circ f$ does not imply that $f \circ g$ even makes sense.
- (ii) The order of application of the functions in a composition is crucial and is read from from right to left.

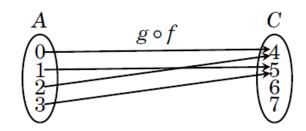
Example 4.14.

(i) Let $A = \{0,1,2,3\}, B = \{1,2,3\}, C = \{4,5,6,7\}.$ If $f : A \to B$ and $g : B \to C$ are the functions defined as follows.

$$f = \{(0,2), (1,3), (2,2), (3,3)\}, g = \{(1,7), (2,4), (3,5)\}.$$

 $g \circ f = \{(0,4), (1,5), (2,4), (3,5)\}$





(ii) If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are functions defined as follows.

$$f(x) = x^2$$
 and $g(x) = \sqrt{x}$. Then $(g \circ f)(x) = g(f(x)) = g(x^2) = \sqrt{x^2}$.

Here $R(f) = [0, \infty) \subseteq D(g) = \mathbb{R}$.

Theorem 4.15.

(i) Suppose $f: A \to B$ and $g: B \to C$ be functions. If both f and g are injective, then $g \circ f$ is injective. If both f and g are surjective, then $g \circ f$ is surjective.

(ii) Composition of functions is associative. That is, if $f : A \to B$, $g : B \to C$ and $h : C \to D$, then $(g \circ f) \circ h = f \circ (g \circ h)$.

Proof.

(i) To prove $g \circ f$ is 1-1. Let $x, y \in A$ and $(g \circ f)(x) = (g \circ f)(y)$. To prove x = y.

$$(g \circ f)(x) = g(f(x)) = g(f(y))$$

$$f(x) = f(y)$$

$$x = y$$

$$\therefore g \circ f \text{ is 1-1.}$$

Def. of \circ Since g is 1-1 and Def. of 1-1on g

Since f is 1-1 and Def. of 1-1on f

To prove $g \circ f$ is onto. Let $z \in D$, to prove $\exists x \in A$ such that $(g \circ f)(x) = z$.

- (1) $\exists y \in B \text{ such that } g(y) = z$
- Since g is onto and Def. of onto on g
- (2) $\exists x \in A \text{ such that } f(x) = y$

Since f is onto and Def. of onto on f Inf. (1), (2)

g(f(x)) = z $(g \circ f)(x) = z$

Def. of o

 $\therefore g \circ f$ is onto.

(ii) Exercise.

Theorem 4.16. Let $f: X \to Y$ be a function. Then f is bijective iff the inverse relation f^{-1} is a function from B to A.

Proof.

Suppose $f: X \to Y$ is bijective. To prove f^{-1} is a function from B to A. (*) Let (y_1, x_1) and $(y_2, x_2) \in f^{-1}$ such that $y_1 = y_2$, to prove $x_1 = x_2$.

$$(x_1, y_1)$$
 and $(x_2, y_2) \in f$

Def. of
$$f^{-1}$$

$$(x_1, y_1)$$
 and $(x_2, y_1) \in f$

By hypothesis (*)

$$x_1 = x_2$$

Def. of 1-1 on *f*

 f^{-1} is a function from B to A.

Conversely, suppose f^{-1} is a function from B to A, to prove $f: X \to Y$ is bijective; that is, 1-1 and onto.

1-1: Let $a, b \in X$ and f(a) = f(b). To prove a = b.

$$(a, f(a))$$
 and $(b, f(b)) \in f$

Hypothesis (f is function)

$$(a, f(a))$$
 and $(b, f(a)) \in f$

Hypothesis (f(a) = f(b))

$$(f(a), a)$$
 and $(f(a), b) \in f^{-1}$

Def. of inverse relation f^{-1}

$$a = b$$

Since f^{-1} is function

 $\therefore f \text{ is } 1-1.$

onto: Let $b \in Y$. To prove $\exists a \in A$ such that f(a) = b.

$$(b, f^{-1}(b)) \in f^{-1}$$

Hypothesis (f^{-1} is a function from B to A)

$$(f^{-1}(b),b)\in f$$

Def. of inverse relation f^{-1}

Put $a = f^{-1}(b)$.

$$a \in A$$
 and $f(a) = b$

Hypothesis (*f* is function)

 \therefore *f* is onto.

Definition 4.17.

- (i) A function $I_A: A \to A$ defined by $I_A(x) = x$, for every $x \in A$ is called the **identity** function on A. $I_A = \{(x, x): x \in A\}$.
- (ii) Let $A \subseteq X$. A function $i_A : A \to X$ defined by $i_A(x) = x$, for every $x \in A$ is called the **inclusion** function on A.

Definition 4.18. (Inverse function)

If $f: X \to Y$ is a bijective function, then its **inverse** is the function $f^{-1}: Y \to X$ such that $f \circ f^{-1} = I_Y$ and $f^{-1} \circ f = I_X$.

Example 4.19. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be a function defined as

$$f(m,n) = (m+n, m+2n)$$

f is bijective as shown in Example 4.11(ii).

To find the inverse f^{-1} formula, let f(n, m) = (x, y). Then

(m+n, m+2n) = (x, y). So, the we get the following system

$$m+n = x \dots (1)$$

 $m+2n = y \dots (2)$
 $m = x - n \dots (3)$
 $n = y - x \dots (4)$
 $m = 2x - y$
Inf. (4),(3)

Define f^{-1} as follows

$$f^{-1}(x, y) = (2x - y, y - x).$$

We can check our work by confirming that $f \circ f^{-1} = I_Y$.

$$(f \circ f^{-1})(x, y) = f(2x - y, y - x)$$

$$= ((2x - y) + (y - x), (2x - y) + 2(y - x))$$

$$= (x, 2x - y + 2y - 2x) = (x, y) = I_Y(x, y)$$

Remark 4.20.

- (i) If $f: X \to Y$ is one-to-one but not onto, then one can still define an inverse function $f^{-1}: R(f) \to X$ whose domain in the range of f.
- (ii) If $f: X \to Y$ and $g: Y \to Z$ are bijective functions, then
- (a) $(f^{-1})^{-1} = f$.
- **(b)** $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Theorem 4.21. Let $f: X \to Y$ be a function.

(i) If $\{Y_i \subset Y : j \in J\}$ is a collection of subsets of Y, then

$$f^{-1}(\bigcup_{j \in J} Y_j) = \bigcup_{j \in J} f^{-1}(Y_j) \text{ and } f^{-1}(\bigcap_{j \in J} Y_j) = \bigcap_{j \in J} f^{-1}(Y_j)$$

Conversely, If $x \in \bigcup_{i \in I} f^{-1}(Y_i)$, then $x \in f^{-1}(Y_i)$, for some $j \in J$

(ii) If $\{X_i \subset X : i \in I\}$ is a collection of subsets of X, then

$$f(\bigcup_{i\in I} X_i) = \bigcup_{i\in I} f(X_i)$$
 and $f(\bigcap_{i\in I} X_i) \subseteq \bigcap_{i\in I} f(X_i)$.

Proof: Let $x \in f^{-1}(\bigcup_{i \in I} Y_i)$.

 $\exists y \in \bigcup_{i \in I} Y_i \text{ such that } f(x) = y$

Def. of inverse relation f^{-1}

 $y \in Y_i$ for some $j \in J$

Def. of U

$$x \in f^{-1}(Y_i)$$

Def. of inverse f^{-1}

so
$$x \in \bigcup_{j \in J} f^{-1}(Y_j)$$

Def. of U

It follow that
$$f^{-1}(\bigcup_{j\in J} Y_j) \subseteq \bigcup_{j\in J} f^{-1}(Y_j)$$

Def. of \subseteq (*)

So $f(x) \in Y_i$ and $f(x) \in \bigcup_{i \in I} Y_i$

Def. of inverse and U

Def. of U

$$x \in f^{-1}(\bigcup_{i \in I} Y_i)$$

Def. of inverse f^{-1}

It follow that
$$\bigcup_{j \in J} f^{-1}(Y_j) \subseteq f^{-1}(\bigcup_{j \in J} Y_j)$$

Def. of
$$\subseteq$$
 (**)

$$f^{-1}(\bigcup_{i \in I} Y_i) = \bigcup_{i \in I} f^{-1}(Y_i)$$

From
$$(*)$$
, $(**)$ and Def. of =

Example 4.22. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a function defined as $f(x) = 1, \forall x \in \mathbb{Z}$.

$$\mathbb{Z}_e \cap \mathbb{Z}_o = \emptyset$$
. $f(\mathbb{Z}_e \cap \mathbb{Z}_o) = f(\emptyset) = \emptyset$. But $f(\mathbb{Z}_e) \cap f(\mathbb{Z}_o) = 1$.