LECTURE 4:

Tools of Laboratory:

The Methods for Studying Microorganisms

The Microscope

Key characteristics of a reliable microscope are:

Magnification – ability to enlarge objects •

Resolving power – ability to show detail

Courtesy of Nikon Instruments Inc., Melville, New York, USA, www.nikoninstruments.com

Magnification

Magnification in most microscopes results from an interaction between visible light waves and the curvature of a lens. The extent of enlargement is the **magnification.**

Magnification in Two Phases

The objective lens forms the magnified **real image**. The real image is projected to the **ocular** where it is magnified again to form the **virtual image**

Total magnification of the final image is a product of the separate magnifying powers of the two lenses

objective power X ocular power= total magnification

Resolution

The capacity to distinguish or separate two adjacent objects and depends on the wavelength of light that forms the image along with characteristics of the objectives

Quantifying Resolution

- -Resolving Power (RP)= Wavelength of light in nm/ 2 X Numerical aperture of objective lens
- -Visible light wavelength is 400 nm-750 nm
- **-Numerical aperture** of lens ranges from 0.1 to 1.25
- -Shorter wavelength and larger numerical aperture will provide better resolution
- -Oil immersion objectives resolution is 0.2 μm
- -Magnification between 40X and 2000X

The Purpose of Oil

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Variations on the Optical Microscope

 Phase-contrast – transforms subtle changes in light waves passing through the specimen into differences in light intensity, best for observing intracellular structures

© Prof. Dr. Heribert Cypionka.

14

Variations on the Optical Microscope

 Bright-field – most widely used; specimen is darker than surrounding field; used for live and preserved stained specimens

© Prof. Dr. Heribert Cypionka, www.microbiological-garden.ne

Variations on the Optical Microscope

 Dark-field – brightly illuminated specimens surrounded by dark field; used for live and unstained specimens

© Prof. Dr. Heribert Cypionka,

13

Copyright D McGraw-Hill Education. All rights reserved. No regroduction or distribution without the prior written consent of McGraw-Hill Education.

Fluorescence Microscope

- Modified microscope with an ultraviolet radiation source and filter.
- Uses dyes that emit visible light when bombarded with shorter UV rays fluorescence
- Useful in diagnosing infections

© Prof. Dr. Heribert Cypionica, www.microbiological-garden.net

Scanning Confocal Microscope

- Uses a laser beam of light to scan the specimen.
- Integrates images to allow focus on multiple depths or planes.

© Anne Fleury

1

Copyright D. McGraw-Hill Education. All rights reserved. No regroduction or distribution without the prior written consent of McGraw-Hill Education.

Electron Microscopy

- Forms an image with a beam of electrons that can be made to travel in wavelike patterns when accelerated to high speeds
- Electron waves are 100,000 times shorter than the waves of visible light
- Electrons have tremendous power to resolve minute structures because resolving power is a function of wavelength
- Magnification between 5,000X and 1,000,000X

Comparing Microscopes:

2 Types of Electron Microscopes

 Transmission electron microscopes (TEM) – transmit electrons through the specimen.
 Darker areas represent thicker, denser parts and lighter areas indicate more transparent, less dense parts.

2 Types of Electron Microscopes

 Scanning electron microscopes (SEM) provide detailed threedimensional view. SEM bombards surface of a whole, metal-coated specimen with electrons while scanning back and forth over it.

Graham Beards - Wikipedia: http://en.wikiped

ral History Museum, Lindon

20

Staining

- Dyes are used to create contrast by imparting color
- Basic dyes cationic, positively charged chromophore
- Positive staining surfaces of microbes are negatively charged and attract basic dyes

2

Staining

- Acidic dyes anionic, negatively charged chromophore
- Negative staining microbe repels dye, the dye stains the background

Acidic Dye

Staining

- Simple stains one dye is used; reveals shape, size, and arrangement
- Differential stains use a primary stain and a counterstain to distinguish cell types or parts (examples: Gram stain, acid-fast stain, and endospore stain)
- Structural stains reveal certain cell parts not revealed by conventional methods: capsule and flagellar stains

23

Staining Examples

Copyright D McGraw-Hill Education. All rights reserved. No regroduction or distribution without the prior written consent of McGraw-Hill Education.

The 6 I's of Culturing Microbes

Inoculation – introduction of a sample into a container of media to produce a culture of observable growth

Isolation – separating one species from another Incubation – under conditions that allow growth Inspection Information gathering Identification

2)

Copyright © McGraw-Hill Education. All rights reserved. No regroduction or distribution without the prior written consent of McGraw-Hill Education.

Isolation

 If an individual bacterial cell is separated from other cells and has space on a nutrient surface, it will grow into a mound of cells—a colony. A colony consists of one species.

Copyright ID McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Inspection

- If a single species is growing in the container, you have a pure culture but if there are multiple species than you have a mixed culture.
- Check for contaminants (unknown or unwanted microbes) in the culture.

Ways to Identify a Microbe:

- Cell and colony morphology or staining characteristics
- DNA sequence
- Biochemical tests to determine an organism's chemical and metabolic characteristics
- Immunological tests

Copyright D McGraw-Hill Education. All rights reserved. No regroduction or distribution, without the grior written consent of McGraw-Hill Education

Ways to Identify a Microbe:

- Cell and colony morphology or staining characteristics
- DNA sequence
- Biochemical tests to determine an organism's chemical and metabolic characteristics
- Immunological tests

2 Copyright ID McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Media: Providing Nutrients in the Laboratory

Media can be classified according to three properties:

- Physical state liquid, semisolid, and solid
- Chemical composition synthetic (chemically defined) and complex
- Functional type general purpose, enriched, selective, differential, anaerobic, transport, assay, enumeration

30

Copyright D McGraw-Hill Education. All rights reserved. No regroduction or distribution without the prior written consent of McGraw-Hill Education.

Physical States of Media

Liquid – broth; does not solidify

Semisolid – contains solidifying agent

Solid – firm surface for colony formation

- Contains solidifying agent
- Liquefiable and nonliquefiable

Consolid S. McGanariti Scientino, Al obtainment for providing or distriction united the core united or more of McGanariti Scientine.

Agar

- The most commonly used solidifying agent
- Solid at room temperature, liquefies at boiling (100°C), does not re-solidify until it cools to 42°C
- Provides framework to hold moisture and nutrients
- Not digestible for most microbes

27

Chemical Content of Media

- Synthetic contains pure organic and inorganic compounds in an exact chemical formula
- Complex or nonsynthetic contains at least one ingredient that is not chemically definable
- General purpose media grows a broad range of microbes, usually nonsynthetic
- Enriched media contains complex organic substances such as blood, serum, hemoglobin, or special growth factors required by fastidious microbes

Examples of Enriched Media

Copyright © McGraw-Hill Education. Permission required for reproduction or display. Growth of Streptococcus pyogenes

Selective & Differential Media

Selective media: contains one or more agents that inhibit growth of some microbes and encourage growth of the desired microbes

Differential media: allows growth of several types of microbes and displays visible differences among those microbes

Some media can be both Selective & Differential

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Convicts D McGraw-Hil Education, All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hil Education.

Copyright © McGraw-Hill Education. Permission required for reproduction or display

Copyright D McGraw-Hill Education. All rights reserved. No regroduction or distribution without the grior written consent of McGraw-Hill Education.