ESCI 241 – Meteorology Lesson 2 – Thermodynamics

References: Meteorology Today, Ahrens

Reading: MT – Chapter 2

ENERGY

- Energy is *the capacity to do work*.
- Two main types of energy
 - Potential energy stored energy
 - Example: In a gravitational field, *PE = mgh*.
 - *Kinetic energy* energy of motion
 - $KE = \frac{1}{2}mv^2$
- Other types of energy
 - *Thermal energy* total of the kinetic energy of all the molecules in a substance
 - Internal energy (U) the sum of thermal energy and any potential energy due to the forces between the molecules of a substance.
 - Note that for an ideal gas, since there are no intermolecular forces, there is no potential energy between molecules. Therefore, *for an ideal gas*, *internal energy and thermal energy are identical!*
- Energy is conserved
 - Energy can be converted from one form to another, but it cannot be created nor destroyed.

TEMPERATURE

- Temperature is related to the average kinetic energy of the molecules of a substance, *T* ∝ *KE*.
- Hot objects have faster moving molecules. Cold objects have slower moving molecules
- Heat is energy that is in the process of being transferred from one object to another due to temperature differences.

TEMPERATURE SCALES

- Temperature scales are rather arbitrary. Meteorologists use three different scales.
- Fahrenheit (°F)
 - Zero point was determined by the lowest temperature that could be achieved with a mixture of ice, water, and salt.
 - 100° point was determined by the rectal temperature of a cow (Callen, 1985).
 - Water freezes at 32°F, and boils at 212°F.
- Celsius (°C)
 - Zero point determined by freezing point of water
 - 100° point corresponds to boiling point of water.
 - **O** Conversion from Celsius to Fahrenheit

$$F = \frac{9}{5}C + 32$$

- Kelvin (K)
 - Referred to as the *absolute* temperature scale
 - Zero point determined by the lowest temperature to which any matter can be cooled (*entropy, not energy, is zero*).
 - Degree interval is same as in Celsius
 - Conversion from Kelvin to Celsius

$$C = K - 273.15$$

FIRST LAW OF THERMODYNAMICS

- Energy is conserved.
- The internal energy (*U*) of an air parcel can be changed by either heating the parcel (*Q*) the parcel, or by doing work (*W*).

$$\Delta U = Q + W$$

- Positive work implies work being done *on* the air parcel, whereas negative work implies work being done *by* the air parcel.
- An expanding air parcel does work on its environment. Therefore, *an expanding air parcel will lose internal energy, and cool.*

• Conversely, a shrinking air parcel has work done on it by the environment. Therefore, *a shrinking air parcel will gain internal energy, and warm*.

SENSIBLE HEAT AND HEAT CAPACITY

- Sensible heat results in a change of temperature.
- The amount of heat required to raise the temperature of an object by 1°C is called the *heat capacity*, *C*.
 - Heat capacity depends on both the amount and type of the substance
 - Units of heat capacity are J-K⁻¹
- The heat capacity will depend on whether the pressure or volume changes during the heating.
 - If pressure is held constant, then the heat capacity is denoted as *Cp*.
 - \circ If volume is held constant, then the heat capacity is denoted as Cv.
- Heat capacity per unit mass is called the *specific heat*

$$c_v = C_v / m$$
$$c_p = C_p / m$$

• Units of specific heat are J-kg⁻¹-K

PHASE CHANGES AND LATENT HEAT

- The amount of heat required to change the phase of a unit mass of a substance is called the *latent heat*.
 - The amount of latent heat depends on the substance and the process. The processes are:
 - Melting solid to liquid, absorbs heat
 - Freezing liquid to solid, releases heat
 - Evaporation liquid to vapor, absorbs heat
 - Condensation vapor to liquid, releases heat
 - Sublimation solid to vapor, absorbs heat
 - Deposition vapor to solid, releases heat
- Latent heating is an important heat source and sink for the atmosphere.

HEAT TRANSFER

- Heat can be moved or transported in one of three ways
 - Conduction Transfer of heat through physical contact
 - Convection Transfer of heat through movement of fluid
 - In Meteorology, the term convection is used solely for vertical transport by a fluid. Horizontal transport is referred to as *advection*.
 - *Radiation* Transfer of heat through electromagnetic waves

EXERCISES

- 1. The specific heat of water at constant pressure is $1 \text{ cal-g}^{-1} \circ \mathbb{C}^{-1}$.
 - a. What is the heat capacity at constant pressure of 2 kg of water?
 - b. How much energy must be added to 2 kg of water to increase the temperature by 3°C?
- 2. How much heat is released by the condensation of 3 kg of water vapor? (The latent heat of vaporization is 600 cal-kg⁻¹.)
- 3. A 3 kg block of aluminum has a heat capacity (constant pressure) of 2691 J-K⁻¹.
 A 0.5 kg block of beryllium has a heat capacity (constant pressure) of 912 J-K⁻¹.
 Which one has a higher specific heat at constant pressure?
- 4. A 1.5-kg parcel of dry air is at a temperature of 15°C and a pressure of 1013 mb.
 - a. How many moles of air are in the parcel? (The molecular weight of air is 28.96 g/mol)
 - b. What is the volume of the parcel?
 - c. If 50 KJ of heat are added to the parcel while its volume is held constant, what is the new temperature of the parcel? (The specific heat of air at constant volume is 717 $J-kg^{-1}-K^{-1}$).
 - d. If 50 KJ of heat are added to the parcel while its pressure is held constant, what is the new temperature of the parcel? (The specific heat of air at constant pressure is $1005 \text{ J-kg}^{-1}\text{-K}^{-1}$).