
Chapter 3

Atmospheric Radiative Transfer

3.1 Scattering

Scattering changes only the direction of a photon, but does not destroy pho-
tons nor does it create any new photons. For the radiance in a given direction,
scattering can be lead to a reduction, similar to absorption. For absorption:

(
∂I

∂s

)

absorption

= −α · I (3.1)

Similar for scattering out:
(
∂I

∂s

)

scattering out

= −αs · I (3.2)

Figure 3.1: Scattering out at particle.
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However, scattering can also lead to an intensification of the radiance in
a given direction by scattering in of radiation from other directions.
For scattering in:

(
∂I

∂s

)

scattering in

= +αs ·
1

4π

∫ 4π

0

I(Ω′)P (Ω,Ω′)dΩ′ (3.3)

Figure 3.2: Scattering in at particle.

With P the so-called phase function, describing the probability for scat-
tering in a given direction. Instead of giving P (Ω,Ω′) (i.e. as a function of
incident and scattering solid angle) one can describe P (Θ), where Θ is the
angle between an incident (incoming) and scattered light.

È

Figure 3.3: Scattering at particle with angle Θ.

Different regimes for scattering exist, depending on the wavelength of the
radiation and the size of the scattering particles (air molecules, aerosols, rain
drops, etc.).
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Figure 3.4: Different Scattering Regimes.

Define the size parameter:

α =
2πr

λ
(3.4)

with: λ wavelength and r size (radius) of particle.
For α≪ 1 Rayleigh scattering
For α > 1 Mie scattering (Mie-theory works for special particles only)
For α≫ 1 Geometric optics

3.2 Rayleigh Scattering

Rayleigh scattering is the limiting case for the Mie-theory for α ≪ 1.
The cross section for Rayleigh scattering is given as:

σRayleigh = N
2π5

3

d6

λ4

(
n2 − 1

n2 + 2

)2

(3.5)
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with n the refractive index of the medium, λ the wavelength of radiation, d
the diameter of the particles (d = 2r) and N the number density of scat-
tering particles (number of particles per unit volume). Note the strong λ−4

wavelength dependence of the Rayleigh cross section. Because there is about
a factor of two in wavelength between blue/violet (≈ 400nm) light and red
light (≈ 800nm), the blue radiation will be scattered about 16 times more
effective! (⇒ blue sky)

The phase function of Rayleigh scattering is given by:

pRayleigh(Θ) =
3

4
(1 + cos2 Θ) (3.6)

È[°]

Direction of incomming
radiation

Direction of incoming
Radiation

Figure 3.5: Phase Function of Rayleigh scattering.

Note the symmetry between forward and backward scattering.
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3.3 Mie Scattering

Mie-theory is applicable for spherical particles only. Mie-theory provides
scattering cross section and phase function as a function of:

1. refractive index

2. size parameter: α = 2πr
λ

3. scattering angle ”Θ”

For typical atmospheric particles (aerosols, clouds) the scattering cross
section σMie has only a slight wavelength dependence. (⇒ white/gray clouds)

The phase function shows a strong forward peak for longer particles.
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Figure 3.6: Scattering angles in Aerosols depending
on the radius.

The asymmetry parameter g describes the ratio of forward to backward
scattering:

g =

∫ +1

−1
p(Θ) cosΘ d cosΘ (3.7)
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For pure forward scattering (p(Θ) = δ(Θ)):

g =

∫

δ(Θ) cosΘ d cosΘ = cos(0) = +1 (3.8)

For pure backward scattering g = −1.
For Rayleigh scattering g = 0.

3.4 Radiative Transfer Equation

• absorption: (
dI

ds

)

absorption
= −αabs · I (3.9)

• emission: (
dI

ds

)

emission
= +αabs · J

︸︷︷︸

source
(3.10)

In particular for thermal emission in Local Thermodynamic Equilib-
rium (LTE):

(
dI

ds

)

thermal
= +αabs · Lλ(T )

︸ ︷︷ ︸

Planck function

(3.11)

• scattering out: (
dI

ds

)

out
= −αscat · I (3.12)

• scattering in:
(
dI

ds

)

in
= +αscat ·

1

4π

∫ 4π

0

I p dΩ

︸ ︷︷ ︸

Jscattering source function

(3.13)

Taking these processes together leads to:

dI

ds
= −(αabs.+ αscatt.)· I+ αabs. ·Lλ(T )+αscatt. ·

1

4π

∫ 4π

0

I ·p·dΩ (3.14)

This is the Radiative Transfer Equation (RTE).



3.5. PASSIVE MICROWAVE SENSING 33

3.5 Radiative Transfer without Scattering

- Applications for Passive Microwave

Sensing of Atmospheric Constituents

Without scattering, the Radiative Transfer Equation can be written as:

dI

ds
= −α

︸︷︷︸

abs. coeff.

· I
︸︷︷︸

radiance

+ α · L
︸︷︷︸

Planck function

= −α (I − L) (3.15)

which is a good approximation for microwave or infra-red radiation.

***

If we ignore the thermal emission for a moment, the RTE further simplifies
to:

dI

ds
= −α · I (3.16)

Which can be solved as:

I = I0 · exp(−α · s) (Beer-Lambert-law) (3.17)

if α is constant (independent of the light path s).

Light-
sourceI0

s= 8

I(s=0)s=0

Figure 3.7: The way of radiation and the intensity.
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If α is not constant:

dI

ds
= −α(s) · I (3.18a)

→
∫
dI

I
= −

∫

α(s) ds (3.18b)

→ ln
I

I0
= −

∫

α(s) ds (3.18c)

→I = I0 · exp
(

−
∫ s

0

α(s′) ds′
)

(3.18d)

The term

τ(s) =

∫ s

0

α(s′) ds′

is called the optical thickness or optical depth. The factor

Tν(s) = exp

(

−
∫ s

0

α(s′)ds′
)

= e−τ(s)

is called the transmission. We can also write the transmission as

Tν(s, s
′) = exp

(

−
∫ s′

s

α(s′′)ds′′

)

***

Including the effect of thermal emission, the RTE becomes

I(s) = I0 · e−τ(s)
︸ ︷︷ ︸

Background
radiation trans-
mitted through
the whole atmo-
sphere.

+

∫ s

0

α(s′) · Lν(T (s
′)) · e−τ(s′) · ds′

︸ ︷︷ ︸

Thermal emis-
sion from layer
s’, transmitted
through the
atmosphere
between layer s’
and the observer
at s.

(3.19)
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It is convenient to replace the distance s by the altitude z.

È

} Äs }Äz

Figure 3.8: The radiance through a plane parallel at-
mosphere with the altitude z.

For a plane parallel to the atmosphere:

ds = µdz (3.20)

with µ = 1/ sinΘ. Here µ is called the geometric air mass factor.
(For a spherical atmosphere, a good approximation is given by:

µ(z) =
1 + z/a

√

sin2 Θ+ (2z/a) + (z2/a2)

while a is the earth’s radius.)
With this the RTE changes to:

I(z) = I0 · e−τ(z) +
∫ z

0

α(z′) · µ(z′) · Lν(z
′) · e−τ(z′) · dz′

and

τ(z) =

∫ z

0

α(z′) · µ(z′) · dz′

Note that because the derivative of

Tν = exp

(

−
∫

α · µ · dz′
)

is given by
dTν
dz

= −α · µ · exp
(

−
∫

α · µ · dz′
)

,



36 CHAPTER 3. ATMOSPHERIC RADIATIVE TRANSFER

the RTE can now be written as:

I(z) = I0 · Tν(0, z) +
∫ z

0

Lν(T (z
′)) · dTν(0, z

′)

dz′
· dz′ (3.21a)

= I0 · Tν(0, z) +
∫ Tν=1

Tν=0

Lν · dTν (3.21b)

This form of RTE can be easily discretized and further be solved, i.e.
numerically. Define absorption coefficients and Planck-Function on a grid of
N discrete levels.

á ki-1, i-1

á ki-1, i-1

zi-1

zi

zi+1

zi-2

zN

Figure 3.9: The N discrete levels of zi.

The transmission Tν can the be calculated as:

Ti = exp

(

−
i−1∑

j=0

αjµj∆z

)

(3.22)

and

I(z) = I0) · Tr(z =∞)
︸ ︷︷ ︸

= IN · τN
+

N∑

i=1

Li (Tri − Tri−1) (3.23)

3.6 Weighting Function for Microwave and

Infrared Satellite Nadir Sounding

As a simple example we will consider in this section the retrieval of atmo-
spheric temperature by a nadir looking microwave satellite sounder. I.e., the
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instrument measures brightness temperatures emitted by the Earth surface
and the atmosphere. In order to simplify the example, we will consider a
case (i.e., a spectral region) where the atmospheric absorption is primarily
due to well mixed cases such as O2 or CO2.

Remember the RTE without scattering:

dIν
dz

= −ανIν + ανLν (3.24a)

= −α(Iν − Lν) (3.24b)

(Also known as ”Schwarzschild” equation.)
With Tν(z, z

′) as the transmission between z and z′ is given by:

Tν(z, z
′) = exp

(

−
∫ z′

z

α(z”)dz”

)

(3.25)

Now, the RTE can be solved to give the upward directed radiance at the
altitude z′. This equation is given by:

Iν(z) = Iν(0) Tν(0, z) +

∫ z

0

Lν(z
′)
∂Tν(z, z

′)

∂z′
dz′ (3.26)

This is what the a satellite nadir sounder in the microwave or infrared spectral
regin will observe (for z →∞). For a nadir looking satellite sensor this can
be written as:

Iν(∞) = Iν(0) Tν(0,∞) +

∫ ∞

0

Lν(z)Kν(z)dz (3.27)

with the Weighting Functions K(z) defined as:

Kν(z) =
∂Tν(z,∞)

∂z
. (3.28)

We can write the measured intensity and the radiative transfer equation
also in terms of brightness temperature:

Tb,ν(∞) = ǫTsurfaceTν(0,∞) +

∫ ∞

0

T (z)Kν(z) dz (3.29)

where Tb,ν(∞) is the measured brightness temperature at frequency ν, Tsurface
the (actual, physical) temperature of the Earth surface and ǫ the emissivity
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of the Earth surface (ǫ = 1 if the surface is a black body). T (z) is the temper-
ature of the atmosphere at hight z, while Tν(0,∞) is the total transmission
of the atmosphere at frequency ν between the surface (z = 0) and the top of
the atmosphere (z =∞).

This means that the observed signal will be the sum of a contribution from
the emission of the surface (attenuated by the atmospheric transmission) plus
the contributions from the individual atmospheric heights, weighted by the
corresponding Weighting Function. This is the meaning of the Weighting
Function: It will determine how much one atmospheric layer (the tempera-
ture of this layer in this example here) contributes to the measured signal
(the measured brightness temperature in this example).

For the idealized example discussed in this section we can find an analyt-
ical expression for the weighting functions, as we will see in the following. In
more realistic cases, however, the weighting functions can only be calculated
numerically from the discretized radiative transfer equation.

If the absorption results form a uniformly mixed compound (such as CO2

or O2), the absorption coefficient can be assumed to be of the form :

αν(z) = σνn(z) (3.30)

With the number density profile n(z) decreasing exponetially with the height,
given by:

n(z) = n(0) exp
(

− z

H

)

(3.31)

(scale height H, typically about 7km)

That means:

αν(z) = αν(0) exp
(

− z

H

)

(3.32)

then the transmission will be given by:

Tν(z,∞) = exp(−αν(z)H) (3.33)

and the Weighting Function are given by:

Kν(z) =
∂Tν(z,∞)

∂z
= αν(z) exp(−αν(z)H) (3.34)
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These functions have their maximum at zmax when:

α(zmax)H = 1 ⇒ zmax = H ln(αν(0)H) (3.35)

At the maximum the Weight Function have the value:

Kν(zmax) =
1

eH
≈ 0, 05/km (3.36)
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Figure 3.10: Idealized weighting functions for a nadir
sounder, as given by eq. (4.11) with a scale height of
H = 7km.
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