
Republic of Iraq
Ministry of Higher Education

And Scientific Research
Mustansiriyah University

College of Science

Advanced Atmospheric Radiation and
Remote Sensing

PhD lectures
(2018-2019)

Reference Text Book by;
Fernerkundung atmosp¨arischer Zustandsgr¨oßen Bj¨orn-Martin Sinnhuber ,
University of Berlin, Berlin, Germany 2015



Contents

1 Preface 7

2 Electromagnetic Radiation 9
2.1 Maxwell Eq. & EM Waves . . . . . . . . . . . . . . . . . . . . 9
2.2 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Stokes Parameter . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Radiometric Definitions . . . . . . . . . . . . . . . . . 16
2.2.3 The Radiant Flux . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Monochromatic Radiance or Intensity . . . . . . . . . . 17
2.2.5 Monochromatic Irradiance . . . . . . . . . . . . . . . . 18
2.2.6 Total Flux Density . . . . . . . . . . . . . . . . . . . . 19
2.2.7 Total Flux . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Black Body & Planck . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Brightness Temperature . . . . . . . . . . . . . . . . . . . . . 23
2.5 Interaction of Radiation . . . . . . . . . . . . . . . . . . . . . 24

3 Atmospheric Radiative Transfer 27
3.1 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Mie Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 RTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Passive Microwave Sensing . . . . . . . . . . . . . . . . . . . . 33
3.6 Idealized Example . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Retrieval Techniques 41
4.1 Example: Retrieval of atmospheric temperature profiles . . . . 41
4.2 Introduction to estimation theory . . . . . . . . . . . . . . . . 42

4.2.1 Vectors and matrices . . . . . . . . . . . . . . . . . . . 42

3



4 CONTENTS

4.3 The overdetermined case . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 Statistical basics . . . . . . . . . . . . . . . . . . . . . 44

4.4 Singular value decomposition . . . . . . . . . . . . . . . . . . 45
4.5 Tikhonov-Phillips Regularization . . . . . . . . . . . . . . . . 46
4.6 Optimal Estimation . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Averaging kernels . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Principles of Satellite Remote Sensing 51
5.1 Satellite Characteristics: Orbits . . . . . . . . . . . . . . . . . 51
5.2 Geostationary Orbits (GEO) . . . . . . . . . . . . . . . . . . . 52
5.3 Lower Earth Orbits (LEO) . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Polar and Near Polar Orbits . . . . . . . . . . . . . . . 54
5.3.2 Tropical or Inclination orbits . . . . . . . . . . . . . . . 56

5.4 Spatial resolution . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Temporal Resolution . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Spectral and Radiometric Resolution . . . . . . . . . . . . . . 60

6 Infra-red and Microwave Remote Sensing 63
6.1 Spectroscopy of rotational and vibrational transitions . . . . . 63

6.1.1 Line Strength . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.2 Line Shape Function . . . . . . . . . . . . . . . . . . . 66
6.1.3 Rotational Transitions . . . . . . . . . . . . . . . . . . 69
6.1.4 Vibrational Transitions . . . . . . . . . . . . . . . . . . 71
6.1.5 Combination Rot. and Vibr. . . . . . . . . . . . . . . . 73

6.2 Microwave Remote Sensing: Heterodyn Principle . . . . . . . 75
6.2.1 Quasi Optics . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.3 Spectrometer . . . . . . . . . . . . . . . . . . . . . . . 78

7 Optical UV-visible RS 83
7.1 Optical Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 The Sun as a Light Source . . . . . . . . . . . . . . . . . . . . 83

7.2.1 Multiple Light Paths when measuring with remote sens-
ing the atmosphere . . . . . . . . . . . . . . . . . . . . 84

7.3 The Airmass Factor . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.1 Dependence on Solar Zenith Angle (SZA) . . . . . . . 86
7.3.2 Dependence on Absorber Altitude . . . . . . . . . . . . 86
7.3.3 Dependence on Wavelength . . . . . . . . . . . . . . . 88



CONTENTS 5

7.4 Wavelength Pair Technique . . . . . . . . . . . . . . . . . . . 88
7.5 DOAS Measurements . . . . . . . . . . . . . . . . . . . . . . . 89

7.5.1 The DOAS Equation . . . . . . . . . . . . . . . . . . . 90
7.5.2 Examples for DOAS Measurements . . . . . . . . . . . 91

7.6 Backscatter UV Ozone (Nadir) Measurements . . . . . . . . . 91
7.7 Solar Occultation Measurements . . . . . . . . . . . . . . . . . 93
7.8 UV/Visible Limb Measurements . . . . . . . . . . . . . . . . . 95
7.9 Measurement Technniques . . . . . . . . . . . . . . . . . . . . 97

8 Active Remote Sensing of the Atmosphere 99
8.1 Radar sounding of rain . . . . . . . . . . . . . . . . . . . . . . 99



6 CONTENTS



Chapter 1

Preface

This script summarizes the most relevant parts of the lecture ‘Remote Sens-
ing of the Atmosphere (‘Fernerkundung atmosphärischer Zustandsgrößen’)
as given in the summer semester of 2013 at the Karlsruhe Institute of Tech-
nology. It is based on previous lectures given at the University of Bremen,
partly in collaboration with Astrid Bracher (Alfred Wegener Institute and
University of Bremen). Even though we have spent some effort in writing
this script, it cannot replace a proper textbook. More importantly, it can
also not replace the lecture. Many pictures, graphics and additional expla-
nations are given in the lecture (e.g., in the form of slides shown) that are
not included here.

The focus of this lecture is on the fundamentals of atmospheric remote
sensing methods, with a particular focus on passive remote sensing tech-
niques. Active techniques are covered only very briefly in the final chapter,
that discusses the fundamentals of weather and precipitation radar remote
sensing. As the focus of this lecture is on the fundamentals and underlying
principles, the technical aspects of the remote sensing systems, like detectors,
spectrometers and optical components are not covered in any detail.
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Chapter 2

Electromagnetic Radiation

2.1 Maxwell Equations and Electromagnetic

Waves

Electromagnetic waves do not need a medium to propagate (no ‘ether’) but
are given by the changing electric and magnetic fields. They follow from the
Maxwell equations:

∇× E = −∂B
∂t

(2.1)

∇×H =
∂D

∂t
+ J (2.2)

∇ ·D = ρ (2.3)

∇ ·B = 0 (2.4)

with:
E: Electric field
D: Displacement (D = ǫ0ǫrE)
H: Magnetic field
B: Induction (B = µ0µrH)
J : Current density (J = σE)
ρ: Charge density
σ: Conductivity
µ: Permeability (µ = µ0µr)

9



10 CHAPTER 2. ELECTROMAGNETIC RADIATION

ǫ: Permittivity (dielectric constant, ǫ = ǫ0ǫr)

Thus we can write:

∇× E = −µ ∂
∂t
H (2.5)

∇×H = σE + ǫ
∂

∂t
E (2.6)

and with the assumption of ∇ · E = 0 and ∇ × H = ǫ ∂
∂t
E (because J → 0

at vacuum = no free charges) it follows:

∇2E = µ0ǫ0
∂2E

∂t2
(2.7)

This is a three-dimensional wave equation. Solutions are propagating planewaves.
E.g., for the y-component of the electric field we can write:

Ey = E0e
−i(kx−ωt) (2.8)

(and similarly for the x- and z-component) with:
E0: Amplitude
k: (complex) wave number
ω: angular frequency

Inserting the wave ansatz (eq. 2.8) in vacuum (ǫr = 1 and σ = 0) in eq. 2.7,
leads to:

k2 = ω2µ0ǫ0 (2.9)

For the (phase) velocity of electromagnetic waves in vacuum it thus follows:

c =
ω

k
=

1√
µ0ǫ0

(2.10)

This is the speed of light!

In media the speed of light (= velocity of electromagnetic waves) will be
reduced:

cr =
c√
ǫ′r

(2.11)
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Inserting the wave ansatz to the wave equation outside of vacuum leads to:

k2 = ω2µǫ− iωµσ (2.12a)

= ω2µ
(

ǫ− iσ
ω

)

(2.12b)

Most materials of interest have µr ≈ 1, so we can write:

k2 = ω2µ0ǫ0ǫ
′
r (2.13)

with an effective dielectric constant:

ǫ′r = ǫr − i
σ

ǫ0ω
(2.14)

In vacuum ǫr = 1 and σ = 0, so that

k2 = ω2µ0ǫ0 (2.15)

The ratio between the speed of light in vacuum and the speed of light in a
medium is the refractive index:

n =
c

cr
=
√

ǫ′r (2.16)

The refractive index is thus a complex quantity that we can split into a real
and an imaginary part:

n = η + iχ (2.17)

Writing for k:

k =
ωn

c
=
ωη

c
+
iωχ

c
(2.18)

and inserting into the wave ansatz.

Ey = E0e
−i(kx−ωt) (2.19)
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gives:

Ey = E0e
ωχx
c e−i(

ωηx
c
−ωt) (2.20)

I.e., we see that the imaginary part of the refractive index (χ) describes an
attenuation (or damping) of the wave in the medium.

The distance d over which the electric field is fallen off to 1
e
is thus given

by

d =
c

ω | χ | (2.21)

and called the skin depth.

Example:
Sea water at 20◦C has a dielectric constant at 10 GHz of ǫ′r = 52− 37i:

n =
√

ǫ′r = 7.6− 2.4i

χ = −2.4
d =

c

ω|χ|
= 3 · 108 m/s2π · 10 · 109s−1 · 2.4

= 1.99mm

This means that sea water is virtually opaque at 10 GHz.

Summary electromagnetic waves:
Frequency ν = ω

2π

Wavelength λ = c
ν

Wavenumber k = 2πn
λ

(if using the refractive index n here, then λ is the
vacuum wave length).

Note that wave number is proportional to frequency!
Often another definition of the wave number is introduced as:

ν̃ = ν/c. (2.22)

(The wavenumber ν̃ is typically expressed in units of cm−1.) This is related
to k by ν̃ = k/2π. (Similarly as ν = ω/2π.)
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Energy of a photon E = hν, with h Planck’s constant. (Please don’t
confuse with electric field vector!)

Because

ν̃ =
E

hc
(2.23)

wavenumber is also proportional to photon energy.

2.2 Polarization

For electromagnetic waves the vectors for the electric and magnetic fields
are perpendicular to each other and also perpendicular to the direction of
propagation:
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E

B

Direction of Propagation

Figure 2.1: Polarization with electric and magnetic
field.

The electromagnetic wave is thus linearly polarized (with the E-vector in
the x-z-plane and the H-vector in the the y-z-plane and the propagation of the
wave in z-direction here). Altough a single electromagnetic wave is linearly
polarized, natural light is in general unpolarized (polarization is possible, but
only a special case). Two waves with the same frequency and the same prop-
agation direction but different polarization planes for the E-vector superpose
to a resulting E-vector. Depending on the phase difference of the two waves
the resulting wave will be either linearly, elliptically or circularly polarized.
(Individual electromagnetic waves also have a clear phase relationship, i.e.,
they are coherent. In contrast, natural light is incoherent.)
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2.2.1 Stokes Parameter

We can describe the state of polarization by the amplitudes of two orthogonal
linear polarizations and the phase difference between them. A more conve-
nient description uses the the so-called 4 Stokes parameters I, Q, U , and V .
Assume that we have an instrument that measures light intensity (we will
shortly define more precisely what ‘intensity’ means) using a polarizer where
the angle by which we turn the polarizer is given by φ:

Stokes Parameter

Angle ö

In
te

n
s
it
y
 I

ö0

Imax

Imin

I/2

Figure 2.2: The special stokes parameter I.

I(φ) =
1

2

(
Ī +∆I cos 2 (φ− φ0)

)
(2.24)

with:

Ī = Imax + Imin (2.25a)

∆I = Imax − Imin (2.25b)

then:

Q = ∆I cos 2φ0 (2.25c)

U = ∆I sin 2φ0 (2.25d)
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so that:

I(φ) =
1

2

(
Ī +Q cos 2φ+ U sin 2φ

)
(2.26)

Now we introduce a wave plate with retardations ǫ and measure:

I(φ, ǫ) =
1

2

(
Ī +Q cos 2φ+ (U cos ǫ− V sin ǫ) sin 2φ

)
(2.27)

We can determine I,Q, U and V from four measurement of the intensity:

I(φ = 0, ǫ = 0) = 1/2(I +Q) (2.28a)

I(φ = π/2, ǫ = 0) = 1/2(I −Q) (2.28b)

I(φ = π/4, ǫ = 0) = 1/2(I + U) (2.28c)

I(φ = π/4, ǫ = π/2) = 1/2(I − V ) (2.28d)

Q and U describe the degree of linear polarization and V describes the degree
of circular polarization. If light is unpolarized then Q = U = V = 0.
We can define the degree of polarization as:

√

Q2 + U2 + V 2

I
(2.29)

2.2.2 Radiometric Definitions

The intensity or more specifically the flux of energy carried by electromag-
netic radiation can be described in several ways.

Side remark: Review of solid geometry and the solid angle:
The treatment of the radiation field requires us to consider the amount

of radiant energy with a certain solid angle Ω.

r

r

Ù

surface
area

Figure 2.3: The solid angle over the surface area.
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The solid angle is defined as,

Ω =
area

r2

and given in sterradians (sr.). The solid angle spanned by a full sphere is
4πsr. This is in analogy with the ordinary plane angle in radians (rad),
where the angle φ can be defined as,

φ =
length

r

and where the angle over a full circle is 2π rad.

r

r

ö (arc-) lenght

Figure 2.4: Location of the φ in plane.

2.2.3 The Radiant Flux

We start our discussion of radiometric definitions by introducing the radiant
flux Φ. It gives the rate of energy transported towards or away from a
surface in units of Watts (W = J/s). As an example, the radiant flux or
power emitted by the sun is Φ = 3.9× 1026 W.

2.2.4 Monochromatic Radiance or Intensity

The intensity of electro-magnetic radiation or the monochromatic radiance
describes the flux of photons of a given frequency per irradiated area and per
solid angle.

Iν =
dEν

dt dAdΩ dν
(2.30a)

=
energy

time · area · solid angle · frequency (2.30b)
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typically given in units of J s−1 m−2 sr−1Hz−1 = Wm−2 sr−1Hz−1 with:
Eν : (monochromatic) radiant energy (J)
t: time (s)
A: irradiated area (m2)
Ω: solid angle (sr)
ν: frequency (Hz = s−1)

Figure 2.5: Schematic of a radiance meter viewing
the surface. From Martin, An Introduction to Ocean
Remote Sensing, Cambridge.

2.2.5 Monochromatic Irradiance

(Also known as flux density.)

Fν =

∫

2π

Iν cos θ dΩ (2.31)

with units of: Wm−2Hz−1.
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dÙ

È Ií

Figure 2.6: The orientaion of dΩ in the flux density.

I.e., the irradiance (flux density) is the normal component of the radiance
(intensity) integrated over one hemisphere.

2.2.6 Total Flux Density

The total flux density (also called total irradiance) is obtained by integrating
the flux density over all frequencies:

F =

∫ ∞

0

Fν dν (2.32)

with units of: Wm−2.

2.2.7 Total Flux

Finally, we can return at the total flux or radiant flux, as introduced above,
by integrating the total flux density over the irradiated surface area:

Φ =

∫

F dA (2.33)

with units of W.

Caution: The definition of these quantities (radiance, irradiance, flux,
etc.) may vary in different text books!
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2.3 Black Body Radiation, Planck’s Law

All bodies with e 6= 0 emit radiation, called thermal radiation. For a perfectly
black body (i.e., α = e = 1) the emitted radiance Iν is given by Planck’s law:

Iν = Lν =
2hν3

c2
1

e
hν
kT − 1

(2.34)

typically with units of Wm−2 sr−1 Hz−1, or expressed in terms of wavelength
rather than frequency:

Lλ =
2hc2

λ5
1

e
hc

λkT − 1
(2.35)

in units of Wm−3 sr−1. Here k is the Boltzmann constant

k = 1.38 · 10−23 JK−1 (2.36)

and h is Planck’s constant

h = 6.63 · 10−34 Js (2.37)

(From ν = c
λ
follows dν = −c

λ2 dλ and thus

Lν dν = Lλ dλ (2.38)

.
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Figure 2.8: Planck curves for several temperatures in
dependence to the wavelength.

The maximum of the Planck curve is at

νmax = 0.941
3kT

h
[Hz] (2.39)

or

λmax =
2.897 · 10−3

T
[m] (2.40)

This is Wien’s displacement law.

Examples: For T ≈ 300K (typical temperature of the Earth) we get
λmax ≈ 10µm and for T ≈ 6000K (approximately the temperature of the
sun) we get λmax ≈ 480, nm.

Integrating the Planck function over all wavelength (or frequencies) we
get the Stefan-Boltzmann law:

L =

∫ ∞

0

Lλ dλ =
2k4π4

15c2h3
T 4 (2.41)
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and by integrating over all directions we get:

∫ 2π

0

dφ

∫ π/2

0

sin θ cos θL dθ = σT 4 (2.42)

(units: Wm−2) with:

σ = 5.670 · 10−8 Wm−2 K−4 (2.43)

.

2.4 Brightness Temperature

At microwave frequencies (more specifically for hν ≪ kT ) the exponential in
the Planck function can be approximated by:

e
hν
kT ≈ 1 +

hν

kT
(2.44)

so that:

Lν ≈
2kν2

c2
T (2.45)

This is the Rayleigh-Jeans approximation.

Side remark: Note that the Rayleigh-Jeans law does not contain the Planck
constant! This is historically of interest, as the Rayleigh-Jeans approximation
was formulated before the Planck law.
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Figure 2.9: The different approximations for black-
body radiation by Planck, Rayleigh and Wien.

In this regime (hν ≪ kT ) radiance is proportional to temperature. I.e.,
we can use temperature to measure radiance. By using the Rayleigh-Jeans
approximation, we can define the so called black-body brightness tempera-
ture.

TB =
c2

2kν2
Lν (2.46)

This is the temperature a black body would have emitting the same ra-
diance.

2.5 Interaction of Electromagnetic Radiation

with Matter

Matter can react with electromagnetic radiation by:

• reflection

• absorption
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• transmission

• emission

Incoming Reflected

Transmitted

Absorbed

Figure 2.10: The interaction of electromagnetic radi-
ation with matter.

The fraction of the incoming radiation being reflected is described by the
reflectivity coefficient ρ that is dimensionless and between 0 and 1. E.g., a
reflectivity of ρ = 1 means all incoming radiation is reflected. Similarly there
are the absorptivity (α), emissivity (e) and transmissivity (τ) coefficients.

The sum of reflection, absorption and transmission is 1:

α + ρ+ τ = 1 (2.47)

Furthermore, from Kirchhoff’s law follows that always the emissivity coeffi-
cient equals the absorptivity coefficient.

e = α (2.48)

I.e., a body can only emit radiation where it also absorbs radiation.
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