Coding Theory

Sheet 1 Solutions

Spring and Summer 2010

- 1. The code is $C = \{a_1 = 11000, a_2 = 01101, a_3 = 10110, a_4 = 00011\}.$
 - (a) $d(a_1, a_2) = 3$, $d(a_1, a_3) = 3$, $d(a_1, a_4) = 4$, $d(a_2, a_3) = 4$, $d(a_2, a_4) = 3$, $d(a_3, a_4) = 3$.
 - (b) The minimum distance d(C) = 3?
 - (c) Decode the following received words using nearest neighbour decoding: (i) $01111 \rightarrow a_2$; (ii) $10110 \rightarrow a_3$; (iii) $11011 \rightarrow a_1$ or a_4 ; (iv) $10011 \rightarrow a_4$.
- 2. The code $C = \{0000, 1111, 2222\}$. Hence C corrects $\lfloor (4-1)/2 \rfloor = 1$ error. However, some words at distance 2 from a codeword are also corrected.
 - (a) The received words decoded as 1111 are as follows: 1111; 0111, 2111, 1011, 1211, 1101, 1121, 1110, 1112; 0211, 2011, 0121, 2101, 0112, 2110, 1021, 1201, 1012, 1210, 1102, 1120.
 - (b) First, note that P(1 being received) = 1 t and P(0 or 2 being received) = t; so $P(0 \text{ being received}) = P(2 \text{ being received}) = \frac{1}{2}t$. Hence, the probability of correct decoding of the word 1111 is

$$P_c = (1-t)^4 + 8(\frac{1}{2}t)(1-t)^3 + 12(\frac{1}{2}t)^2(1-t)^2$$

= $(1-t)^2\{(1-t)^2 + 4t(1-t) + 3t^2\}$
= $(1-t)^2(1+2t)$.

Hence the probability of a word being incorrectly decoded is

$$P_e = 1 - (1 - t)^2 (1 + 2t) = t^2 (3 - 2t).$$

(c) When t = 0.05, then $P_e = 0.0025 \times 2.9 = 0.00725$.

Solutions 1

3. Here $C = \{00000, 11111\}$. So the words decoded as 11111 and their probabilities are

11111
$$(1-t)^5;$$

01111, (5 like this) $5t(1-t)^4;$
00111, (10 like this) $10t^2(1-t)^3.$

Hence

$$P_c = (1-t)^5 + 5t(1-t)^4 + 10t^2(1-t)^3$$

= $(1-t)^3\{(1-t)^2 + 5t(1-t) + 10t^2\}$
= $(1-t)^3(1+3t+6t^2)$.

So

$$P_e = 1 - (1 - t)^3 (1 + 3t + 6t^2)$$

= $t^3 (10 - 15t + 6t^2)$.

For t = 0.05, the word error probability $P_e = 0.00116$.

4. If $x \neq x'$ and $y \neq y'$, then

$$d((x \mid y), (x' \mid y')) = d(x, x') + d(y, y') \ge d_1 + d_2.$$

But,

$$d((x \mid y), (x' \mid y)) = d(x, x') \ge d_1,$$

with equality for some $x, x' \in C_1$; similarly,

$$d((x \mid y), (x \mid y')) = d(y, y') \ge d_2,$$

with equality for some $y, y' \in C_2$. So $d(C_3) = \min\{d_1, d_2\}$.

By definition the length of C_3 is m+n.

To form $(x \mid y)$, any x in C_1 and any y in C_2 may be chosen. Hence

$$|C_3| = |C_1| \times |C_2| = M_1 M_2.$$

5. Let $s_i = |\{y \in (\mathbf{F}_q)^n \mid d(x,y) = i\}|$. If precisely *i* given positions in the word *x* are changed, this can be done in $(q-1)^i$ ways, since each symbol can be changed in q-1 ways. The *i* positions can be chosen in $\binom{n}{i}$ ways. Hence

$$s_i = \binom{n}{i} (q-1)^i.$$

However,

$$|S(x,r)| = \sum_{i=0}^{r} s_i,$$

which gives the result.