Coding Theory

Sheet 7

Spring 2014

- 1. In a binary linear code, show that either all or precisely half the words have even weight.
- 2. Let C be a binary [n,k] code. Given $W_{C^{\perp}}(T)$, find an expression for $W_C(T)$.
- 3. Let C be the binary [6,3] code with parity-check matrix

$$H = \left[\begin{array}{cccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right].$$

- (a) Find a generator matrix G for C.
- (b) Find the weight enumerator $W_C(T)$ by writing out all the elements of C.
- (c) Apply MacWilliams' theorem to $W_C(T)$ to obtain the weight enumerator $W_{C^{\perp}}(T)$.
- (d) Find the weight enumerator $W_{C^{\perp}}(T)$ by writing out all the elements of C^{\perp} .
- (e) What phenomenon do you observe?
- 4. Let C be the binary [10,7] code with parity-check matrix

Find the weight enumerator $W_C(T)$ by first finding $W_{C^{\perp}}(T)$ and then applying the MacWilliams' theorem. Hence, write down the weight distribution of C.

- 5. (a) For $C = \operatorname{Ham}(r, 2)$, use the result of Sheet 6, Exercise 7 to write down $W_{C^{\perp}}(T)$.
 - (b) Deduce $W_C(T)$.
 - (c) Use the same technique to do the previous parts of this question for C = Ham(r, q), but here with the homogeneous weight enumerator $\overline{W}_C(X, Y)$. (Harder)
- 6. Let C be the $[6,2]_7$ code with generator matrix

$$G = \left[\begin{array}{ccccc} 1 & 0 & 4 & 2 & 3 & 6 \\ 0 & 1 & 4 & 6 & 5 & 2 \end{array} \right].$$

- (a) If the rows of G are x and y, find the weights of the eight codewords y, x + ty for $t \in \mathbf{F}_7$.
- (b) Deduce the weight distribution of C.
- (c) Write down $\overline{W}_C(X, Y)$.
- (d) Calculate $\overline{W}_{C^{\perp}}(X, Y)$.