Coding Theory

Sheet 6

Spring 2014

- 1. Which Hamming codes are MDS (maximum distance separable)?
- 2. Write out a parity-check matrix and a corresponding generator matrix for
 - (a) Ham(2,3);
- (b) Ham(2,4);
- (c) Ham(3,3);

- (d) Ham(3,4);
- (e) Ham(3,5);
- (f) Ham(4, 2).
- 3. * Use a parity-check matrix for Ham(4, 2), with the columns in lexicographical order, and syndrome decoding to decode
 - (a) 00000 00000 11111;
 - (b) 00000 11111 11111;
 - (c) 11111 11111 11111.
- 4. * Let $\mathbf{F}_4 = \{0, 1, \omega, \bar{\omega} \mid \bar{\omega} = \omega + 1 = \omega^2\}$. Use Ham(3, 4), with a parity-check matrix having columns in lexicographical order, to decode
 - (a) 11111111 11111111 11111111;
- 5. For $x, y \in V(n, 2)$, let

$$x \cap y = (x_1 y_1, \dots, x_n y_n).$$

Show that $w(x+y) = w(x) + w(y) - 2w(x \cap y)$.

6. If a binary [n, k] code C has parity-check matrix H, show that the extended code C' constructed in Exercise 8 of Sheet 4 has parity check matrix H', where

$$H' = \left[\begin{array}{cc} H & z^T \\ u & 1 \end{array} \right],$$

with $z = 00 \cdots 0$ of length n - k and $u = 11 \cdots 1$ of length n.

7. If $C = \operatorname{Ham}(r,2)$, show that every non-zero word of C^{\perp} has weight 2^{r-1} .

(Hint: Let $H = [h_1, \ldots, h_r]^T$ be a parity check matrix of C with rows h_1, \ldots, h_r , and let $h = \sum \lambda_i h_i$ be an element of C^{\perp} ; consider the j-th coordinate of h.)

As part of the course assessment, hand in at the School Office solutions to the starred questions, namely 3 and 4, by 2.00 p.m. on Thursday, 20th March. Solutions to all questions will be placed online on Friday, 21st March.