Coding Theory

Sheet 8 Solutions

Spring 2014

1. Let A_i be the set of words of weight i. Then the map from A_i to A_{n-i} given by

$$v \mapsto v + u$$
,

where u = (1, 1, ..., 1), is a bijection, since it is both surjective and injective; it is surjective since $w + y \mapsto w$ and injective since $v_1 + y = v_2 + y$ implies that $v_1 = v_2$. Hence $A_i = A_{n-i}$.

- 2. If $v \in C$ has weight i, then $\lambda v \in C$ for $\lambda \in \mathbf{F}_q$ also has weight i. So the words of weight $i \neq 0$ come in sets of size q 1. Hence, q 1 divides A_i for $i = 1, 2, \ldots, n$.
- 3. For $2 \le r \le q$, let $\mathbf{F}_q = \{0, t_1, \dots, t_{q-1}\}$ and let

$$M = \begin{bmatrix} 1 & 1 & \dots & 1 \\ t_1 & t_2 & \dots & t_{q-1} \\ \vdots & \ddots & \vdots \\ t_1^{r-1} & t_2^{r-1} & \dots & t_{q-1}^{r-1} \end{bmatrix}.$$

Let $M_{i_1 i_2 ... i_r}$ be the $r \times r$ matrix formed from columns $i_1, i_2, ..., i_r$. Then

$$M_{12\dots r} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ t_1 & t_2 & \dots & t_r \\ & \vdots & \dots & \vdots \\ t_1^{r-1} & t_2^{r-1} & \dots & t_r^{r-1} \end{bmatrix};$$

SO

$$\det M_{12...r} = \prod_{\substack{i > j \\ i, j = 1, ..., r}} (t_i - t_j) \neq 0.$$

Similarly, det $M_{i_1 i_2 ... i_r} \neq 0$ for any choice of $i_1, i_2, ..., i_r$. So $\mathcal{N}_{q-1}(r, q)$ is MDS.

The codes $\mathcal{N}_q(r,q)$ and $\mathcal{N}_{q+1}(r,q)$ are checked similarly. First,

$$[M e_1^T] = \begin{bmatrix} 1 & 1 & \dots & 1 & 1 \\ t_1 & t_2 & \dots & t_{q-1} & 0 \\ & \vdots & \dots & & \vdots \\ t_1^{r-1} & t_2^{r-1} & \dots & t_{q-1}^{r-1} & 0 \end{bmatrix}.$$

Solutions 6

Then

$$M' = [M_{12\dots r-1} \ e_1^T] = \begin{bmatrix} 1 & 1 & \dots & 1 & 1 \\ t_1 & t_2 & \dots & t_{r-1} & 0 \\ & \vdots & \dots & & \vdots \\ t_1^{r-1} & t_2^{r-1} & \dots & t_{r-1}^{r-1} & 0 \end{bmatrix},$$

and

$$\det M' = \pm \det \begin{bmatrix} t_1 & t_2 & \dots & t_{r-1} \\ & \vdots & \dots & \vdots \\ t_1^{r-1} & t_2^{r-1} & \dots & t_{r-1}^{r-1} \end{bmatrix} = \pm t_1 t_2 \dots t_{r-1} \prod_{\substack{i > j \\ i, j = 1, \dots, r-1}} (t_i - t_j) \neq 0.$$

This shows that every r columns in $[M e_1^T]$ are linearly independent; so $\mathcal{N}_q(r,q)$ is MDS. To check that $\mathcal{N}_{q+1}(r,q)$ is MDS, it is now only necessary to consider r columns of the generator matrix $[M e_1^T e_r^T]$, where either e_r^T is one of them or both e_1^T, e_r^T are included. So. let

$$M'' = [M_{12\dots r-1} \ e_r^T] = \begin{bmatrix} 1 & 1 & \dots & 1 & 0 \\ t_1 & t_2 & \dots & t_{r-1} & 0 \\ & \vdots & \dots & \vdots & \vdots \\ & & \dots & \vdots & \vdots \\ t_1^{r-1} & t_2^{r-1} & \dots & t_{r-1}^{r-1} & 1 \end{bmatrix};$$

then

$$\det M'' = \pm \prod_{\substack{i > j \\ i, j = 1, \dots, r-1}} (t_i - t_j) \neq 0.$$

Similarly, let

$$M''' = [M_{12...r-2} e_1^T e_r^T] = \begin{bmatrix} 1 & 1 & \dots & 1 & 1 & 0 \\ t_1 & t_2 & \dots & t_{r-2} & 0 & 0 \\ & \vdots & \dots & \vdots & \vdots & \vdots \\ & & \dots & & 0 & 0 \\ t_1^{r-1} & t_2^{r-1} & \dots & t_{r-2}^{r-1} & 0 & 1 \end{bmatrix};$$

then

$$\det M''' = \pm t_1 t_2 \dots t_{r-2} \qquad \prod_{\substack{i > j \\ i, j = 1, \dots, r-2}} (t_i - t_j) \neq 0.$$

Hence $\mathcal{N}_{q+1}(r,q)$ is MDS as well.

4. The parity-check matrix of $\mathcal{N}_{q+2}(3,q)$ is

$$H = \begin{bmatrix} 1 & 1 & \dots & 1 & 1 & 0 & 0 \\ t_1 & t_2 & \dots & t_{q-1} & 0 & 0 & 1 \\ t_1^2 & t_2^2 & \dots & t_{q-1}^2 & 0 & 1 & 0 \\ & & & & c_0 & c_1 & c_2 \end{bmatrix}.$$

Olutions o

It is necessary to check the determinant D of any three columns of H. If the columns are i_1, i_2, i_3 among the first q-1, then $D=(t_{i_3}-t_{i_2})(t_{i_3}-t_{i_1})(t_{i_2}-t_{i_1})\neq 0$. Taking the first two and c_0 gives $D=t_1t_2(t_2-t_1)\neq 0$. Taking the first two and c_1 gives $D=t_2-t_1\neq 0$. Taking the first two and c_2 gives $D=t_2^2-t_1^2$; so, if q is even, $D\neq 0$. However, if q is odd, then D=0 when $t_2=-t_1$. So $\mathcal{N}_{q+2}(3,q)$ is not MDS for q odd.

To complete the result for q even, taking either the last three columns or any two of the last three and the first, $D = 1, t_1, t_1^2 \neq 0$. Hence $\mathcal{N}_{q+2}(3, q)$ is MDS for q even.

5. By definition, $\mathcal{N}_5(3,5)^{\perp}$ is a $[5,3,3]_5$ code and $\mathcal{N}_5(3,5)$ is a $[5,2,4]_5$ code. Then a generator matrix H for $\mathcal{N}_5(3,5)^{\perp}$ is

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & -2 & -1 & 0 \\ 1 & -1 & -1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 2 & 2 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 & 1 \end{bmatrix},$$

by row operations. So, a generator matrix G for $\mathcal{N}_5(3,5)$ is

$$G = \left[\begin{array}{cccc} 1 & 0 & -1 & -2 & 2 \\ 0 & 1 & 2 & -2 & -1 \end{array} \right].$$

For H, the three 2×2 determinants are

$$\begin{vmatrix} 1 & -2 \\ 2 & 2 \end{vmatrix} = 1, \quad \begin{vmatrix} 1 & -2 \\ -2 & 1 \end{vmatrix} = 2, \quad \begin{vmatrix} 2 & 2 \\ -2 & 1 \end{vmatrix} = 1.$$

For G, they have the same values.

6. Let G be a generator matrix for the $[n, k]_q$ MDS code C. Since the first k columns are linearly independent, row operations give the matrix G' in standard form

$$G' = [I_k A],$$

which is another generator matrix for C with $a_{i,j} \neq 0$ for all i, j. Hence the number of words of C with 0 in the first k-1 positions, and so weight n-(k-1), is q-1; these words are just multiples of the last row of G'. However, there is nothing special about these positions. Hence the number of words of weight n-(k-1) is

$$(q-1)\binom{n}{k-1} = (q-1)\binom{n}{n-k+1}.$$

7. Over \mathbf{F}_2 ,

$$X^{3} + 1 = (X + 1)(X^{2} + X + 1);$$

$$X^{4} + 1 = (X + 1)^{4};$$

$$X^{5} + 1 = (X + 1)(X^{4} + X^{3} + X^{2} + X + 1);$$

$$X^{6} + 1 = (X + 1)^{2}(X^{2} + X + 1)^{2};$$

$$X^{7} + 1 = (X + 1)(X^{3} + X + 1)(X^{3} + X^{2} + 1);$$

$$X^{8} + 1 = (X + 1)^{8};$$

$$X^{9} + 1 = (X + 1)(X^{2} + X + 1)(X^{6} + X^{3} + 1).$$

Solutions 6

Note that $X^6 + X^3 + 1$ is irreducible, since if it had a quadratic factor, this would be $X^2 + X + 1$, but

$$X^{6} + X^{3} + 1 = (X^{2} + X + 1)(X^{4} + X^{3}) + 1;$$

if it had a cubic factor, $X^6 + X^3 + 1$ would be the square of $X^3 + X + 1$ or $X^3 + X^2 + 1$ or it would be $(X^3 + X + 1)(X^3 + X^2 + 1)$, none of which hold.

8. In $R_7 = \mathbf{F}_2[X]/(X^7 + 1)$,

$$(1 + X^{3} + X^{6})(1 + X)$$

$$= 1 + X^{3} + X^{6} + X + X^{4} + X^{7}$$

$$= 1 + X^{3} + X^{6} + X + X^{4} + 1$$

$$= X + X^{3} + X^{4} + X^{6};$$

$$(1 + X^{4} + X^{5})(1 + X^{3} + X^{4})$$

$$= 1 + X^{4} + X^{5} + X^{3} + X^{7} + X^{8} + X^{4} + X^{8} + X^{9}$$

$$= 1 + X^{4} + X^{5} + X^{3} + 1 + X + X^{4} + X + X^{2}$$

$$= X^{2} + X^{3} + X^{5}.$$

9. (a) $X^3 + 1 = (X+1)(X^2 + X + 1)$. So generator polynomials, generator matrices and parameters are as follows:

(b) $X^4 + 1 = (X + 1)^4$. So generator polynomials, generator matrices and parameters are as follows:

Solutions 8

(c) $X^5 + 1 = (X+1)(X^4 + X^3 + X^2 + X + 1)$. So generator polynomials, generator matrices and parameters are as follows:

10. Over \mathbf{F}_3 ,

$$X^5 - 1 = (X - 1)(X^4 + X^3 + X^2 + X + 1).$$

So generator polynomials, generator matrices and parameters are as follows: