Coding Theory

Sheet 4 Solutions

Spring and Summer 2010

1. In each case, use row operations to get the matrix in upper-triangular form with 1's as far as possible down the main diagonal.

Hence the subspace has dimension 3.

Hence the subspace has dimension 3.

- 2. To choose a k-dimensional subspace, choose k linearly independent vectors to form a basis $\{v_1, \ldots, v_k\}$.
 - (a) A non-zero vector v_1 in V(n,q) can be chosen in q^n-1 ways.
 - (b) To choose v_2 independent of this, no vector λv_1 can be chosen. Hence there are $q^n q$ choices for v_2 .
 - (c) A vector independent of these can be chosen in $q^n q^2$ ways.
 - (d) Continue with this as far as v_k which can be chosen in $q^n q^{k-1}$ ways.

So the number of ordered sets of k linearly independent vectors is

$$(q^{n}-1)(q^{n}-q)\dots(q^{n}-q^{k-1}).$$

Solutions 4

However, the number of ordered sets of k vectors that will give the same subspace is, in the same way,

$$(q^k - 1)(q^k - q)\dots(q^k - q^{k-1}).$$

Hence the number of k-dimensional subspaces is

$$\frac{(q^{n}-1)(q^{n}-q)\dots(q^{n}-q^{k-1})}{(q^{k}-1)(q^{k}-q)\dots(q^{k}-q^{k-1})}$$

$$=\frac{(q^{n}-1)(q^{n-1}-1)\dots(q^{n-k+1}-1)}{(q^{k}-1)(q^{k-1}-1)\dots(q-1)}.$$

3. Take the first four rows of the incidence matrix of the projective plane of order 2:

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

by row operations only.

4.

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

using only row operations.

Solutions 4 3

5. For the ternary [7, 4] code,

$$G = \begin{bmatrix} 2 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 2 & 0 \\ 2 & 1 & 0 & 2 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 & 0 & 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 2 & 2 & 0 \\ 0 & 2 & 0 & 1 & 1 & 2 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 2 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 2 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 0 & 0 & 2 & 1 & 0 \\ 0 & 2 & 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 2 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 2 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 2 & 0 \end{bmatrix}$$

again just using row operations to preserve the code.

6. By row operations,

$$G = \begin{bmatrix} 1 & 0 & 3 & 5 & 4 \\ 0 & 0 & 2 & 3 & 5 \\ 2 & 1 & 0 & 3 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 5 & 4 \\ 0 & 0 & 2 & 3 & 5 \\ 0 & 1 & 1 & 0 & 6 \\ 0 & 1 & 4 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 5 & 4 \\ 0 & 1 & 1 & 0 & 6 \\ 0 & 0 & 2 & 3 & 5 \\ 0 & 1 & 4 & 2 & 3 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 3 & 5 & 4 \\ 0 & 1 & 1 & 0 & 6 \\ 0 & 0 & 2 & 3 & 5 \\ 0 & 0 & 3 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 5 & 4 \\ 0 & 1 & 1 & 0 & 6 \\ 0 & 0 & 1 & 5 & 6 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 0 & 4 \\ 0 & 1 & 1 & 0 & 6 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Note In this example, as well as the previous ones, it is easy to check if your answer is correct. Is every row of G a linear combination of the rows of the answer $[I_k A]$?

Solutions 4

7. If $G = [I_k A]$ and $G' = [I_k A']$, where the rows of A' are a permutation of the rows of A, then first permute the rows of G' so that A' becomes A; that is, we now have G'' = [P A], where P is a permutation matrix, with a single 1 in each row and column, and other entries 0. Now permute the columns of P to obtain I_k . Thus, by row and column operations G' becomes G. Hence the code C' generated by G' is equivalent to the code C generated by G.

8. Here,

$$x = x_1 x_2 \dots x_n \in C \Longrightarrow x' = x_1 x_2 \dots x_n x_{n+1} \in C',$$

where

$$x_{n+1} = \begin{cases} 1 & \text{if } w(x) \text{ is odd,} \\ 0 & \text{if } w(x) \text{ is even.} \end{cases}$$

Let

$$C_0 = \{x_1 x_2 \dots x_{n+1} \in V(n+1,2) \mid x_1 x_2 \dots x_n \in C; x_{n+1} \in \mathbf{F}_2\},\$$

$$C_1 = \{x_1 x_2 \dots x_{n+1} \in V(n+1,2) \mid x_1 + x_2 + \dots + x_n + x_{n+1} = 0\}.$$

Then C_0 and C_1 are both subspaces of V(n+1,2), and $C'=C_0\cap C_1$. Hence C' is a subspace.

Aliter

The weight of x in V(n,2) is $w(x) = \sum_{i=1}^{n} x_i$. Hence, for $x, y \in V(n,2)$,

$$w(x+y) = \sum (x_i + y_i) = \sum x_i + \sum y_i = w(x) + w(y)$$
 (mod 2).

To check that C' is linear, only one condition is required: $x', y' \in C' \Rightarrow x' + y' \in C'$. There are three cases.

(a) w(x) even, w(y) even; then w(x+y) is even. So

$$(x+y)' = (x_1 + y_1, \dots, x_n + y_n, 0) = (x_1, \dots, x_n, 0) + (y_1, \dots, y_n, 0) = x' + y'.$$

So the mapping is linear in this case.

(b) w(x) odd, w(y) odd; then w(x+y) is even. So

$$(x+y)' = (x_1 + y_1, \dots, x_n + y_n, 0) = (x_1, \dots, x_n, 1) + (y_1, \dots, y_n, 1) = x' + y'.$$

So the mapping is also linear in this case.

(c) w(x) odd, w(y) even; then w(x+y) is odd. So

$$(x+y)' = (x_1 + y_1, \dots, x_n + y_n, 1) = (x_1, \dots, x_n, 1) + (y_1, \dots, y_n, 0) = x' + y'.$$

So the mapping is linear in this final case.