Coding Theory

Sheet 3 Solutions

Spring and Summer 2010

1. Let $\mathbf{F}_4 = \{0, 1, \omega, \bar{\omega} = \omega^2 = \omega + 1\}.$

- 2. An element is primitive in \mathbf{F}_q if it generates the cyclic group; that is, it has order q-1. Note, also, that the order of x divides q-1 and the order of x^{-1} is the same as the order of x. As a check, the number of generators of a cyclic group of order q-1 is $\phi(q-1)$, where $\phi(n)$ is the Euler function that counts the number of positive integers coprime to n.
 - (a) In \mathbf{F}_5 ,

So the primitive elements are 2, -2.

(b) In \mathbf{F}_7 ,

So the primitive elements are 3, -2.

(c) In \mathbf{F}_{13} ,

So the primitive elements are 2, 6, -6, -2.

(d) In \mathbf{F}_{17} ,

So the primitive elements are $\pm 3, \pm 5, \pm 6, \pm 7$.

Solutions 3

3. By the Binomial Theorem,

$$(x+y)^p = x^p + \binom{p}{1}x^{p-1}y + \dots + \binom{p}{r}x^{p-r}y^r + \dots + \binom{p}{p-1}xy^{p-1} + y^p.$$

For $1 \le r \le p-1$,

$$\binom{p}{r} = \frac{p(p-1)\cdots(p-r+1)}{r(r-1)\cdots 3\cdot 2}.$$

As p is prime and p > r, so none of $r, r - 1, \ldots, 2$ divide p. Hence p divides $\binom{p}{r}$, which is therefore zero in \mathbf{F}_p and \mathbf{F}_q . So

$$(x+y)^p = x^p + y^p.$$

4. A monic quadratic in $\mathbf{F}_3[X]$ is $X^2 + bX + c$ with $b, c \in \{0, 1, -1\}$. The reducible ones are

$$X^2$$
, $(X-1)^2 = X^2 + X + 1$, $(X+1)^2 = X^2 - X + 1$, $X(X-1) = X^2 - X$, $X(X+1) = X^2 + X$, $(X-1)(X+1) = X^2 - 1$.

This leaves the 9-6=3 irreducibles:

$$X^2 + 1$$
, $X^2 - X - 1$, $X^2 - X + 1$.

Take $X^2 + 1$ and let $\tau^2 + 1 = 0$; then $\tau^2 = -1$, and $\tau^4 = 1$. So $X^2 + 1$ is not primitive since the order of τ is not 8.

Take $X^2 - X - 1$ and let $\sigma^2 - \sigma - 1 = 0$. Then the elements of \mathbf{F}_9 are $0, 1, \sigma$,

$$\begin{split} \sigma^2 &= \sigma + 1, \quad \sigma^3 = \sigma^2 + \sigma = -\sigma + 1, \\ \sigma^4 &= -\sigma^2 + \sigma = -1, \quad \sigma^5 = -\sigma, \quad \sigma^6 = -\sigma^2 = -\sigma - 1, \\ \sigma^7 &= -\sigma^2 - \sigma = \sigma - 1, \quad \sigma^8 = \sigma^2 - \sigma = 1. \end{split}$$

So $X^2 - X - 1$ is primitive. Similarly, $X^2 + X - 1$ is primitive.

(b)

(c) From Theorem 3.9, the automorphisms of \mathbf{F}_9 are the identity and $x \mapsto x^3$. The zeros of $X^2 - X - 1$ are σ, σ^3 . For an automorphism of \mathbf{F}_9 , the element σ must map to another element that has order 8 and is a zero of $X^2 - X - 1$. Now,

$$(-1+\tau)^2 = 1 - 2\tau + \tau^2 = \tau = (-1+\tau) + 1.$$

Solutions 3

So $-1 + \tau$ is a zero of $X^2 - X - 1$; the other is therefore $-1 - \tau$.

Therefore an isomorphism between these two representations of \mathbf{F}_9 is either $\sigma \mapsto -1 + \tau$ or $\sigma \mapsto -1 - \tau$.

If in (a) the polynomial $X^2 - X + 1$ is chosen, let a zero be ρ . Then an isomorphism would be $\rho \mapsto 1 + \tau$ or $\rho \mapsto 1 - \tau$.

5. A cubic in $\mathbf{F}_2[X]$ is $X^3 + bX^2 + cX + d$ with $b, c, d \in \{0, 1\}$. Recall that the only irreducible quadratic is $X^2 + X + 1$. Hence the reducible cubics are

$$X^3$$
, $(X+1)^3 = X^3 + X^2 + X + 1$, $X^2(X+1) = X^3 + X^2$, $X(X+1)^2 = X^3 + X$, $X(X^2 + X + 1) = X^3 + X^2 + X$, $(X+1)(X^2 + X + 1) = X^3 + 1$

This leaves the 8-6=2 irreducibles:

$$X^3 + X + 1$$
, $X^3 + X^2 + 1$.

As 7 is a prime, a zero of one of these can only have order 7. So, both are primitive.

6. Since $X^4 + 1$ has no zeros in \mathbf{F}_3 , it has no linear factors. So, if it is reducible it can only be the product of two irreducible quadratics; the latter were found in Question 3. In fact,

$$X^4 + 1 = (X^2 + X - 1)(X^2 - X - 1)$$

7. Similarly to Question 4, there are three irreducible quartics in $\mathbf{F}_2[X]$:

$$X^4 + X + 1$$
, $X^4 + X^3 + 1$, $X^4 + X^3 + X^2 + X + 1$.

The first two are primitive; the third is not. With $\alpha^4 + \alpha + 1 = 0$, the elements of \mathbf{F}_{16} are $0, 1, \alpha, \alpha^2, \alpha^3$,

$$\begin{array}{rcl} \alpha^4 & = & \alpha + 1, \\ \alpha^5 & = & \alpha^2 + \alpha, \\ \alpha^6 & = & \alpha^3 + \alpha^2, \\ \alpha^7 & = & \alpha^4 + \alpha^3 = \alpha^3 + \alpha + 1, \\ \alpha^8 & = & \alpha^4 + \alpha^2 + \alpha = \alpha^2 + 1, \\ \alpha^9 & = & \alpha^3 + \alpha, \\ \alpha^{10} & = & \alpha^4 + \alpha^2 = \alpha^2 + \alpha + 1, \\ \alpha^{11} & = & \alpha^3 + \alpha^2 + \alpha, \\ \alpha^{12} & = & \alpha^4 + \alpha^3 + \alpha^2 = \alpha^3 + \alpha^2 + \alpha + 1, \\ \alpha^{13} & = & \alpha^4 + \alpha^3 + \alpha^2 + \alpha = \alpha^3 + \alpha^2 + 1, \\ \alpha^{14} & = & \alpha^4 + \alpha^3 + \alpha = \alpha^3 + 1, \\ \alpha^{15} & = & \alpha^4 + \alpha = 1. \end{array}$$

Solutions 3 4

8. (i) Any monic quadratic in $\mathbf{F}_q[X]$ has the form $X^2 + bX + c$; so there are q^2 of them. If it is reducible, it has the form

$$(X-\alpha)(X-\beta)$$
.

If $\alpha \neq \beta$, there are $\binom{q}{2}$ of them. If $\alpha = \beta$, there are q of them. So the number of reducibles is

$$\frac{1}{2}q(q-1) + q = \frac{1}{2}q(q+1),$$

and so the number of irreducibles is

$$q^{2} - \frac{1}{2}q(q+1) = \frac{1}{2}q(q-1).$$

Alternatively, the elements of $\mathbf{F}_{q^2}\backslash\mathbf{F}_q$ split into $\frac{1}{2}(q^2-q)$ pairs of zeros of irreducible quadratics in $\mathbf{F}_q[X]$.

(ii) This is a similar argument. The number of monic cubics is q^3 . The number reducible to three linear factors is

$$\begin{array}{lll} q & \text{like} & (X-\alpha)^3, \\ q(q-1) & \text{like} & (X-\alpha)(X-\beta)^2 & \text{with } \alpha \neq \beta, \\ q(q-1)(q-2)/6 & \text{like} & (X-\alpha)(X-\beta)(X-\gamma) & \text{with } \alpha, \beta, \gamma \text{ distinct,} \end{array}$$

totalling $\frac{1}{6}q(q^2+3q+2)$.

The number of cubics that are the product of a linear factor and an irreducible quadratic is

$$q \times \frac{1}{2}q(q-1) = \frac{1}{2}q^2(q-1).$$

Hence the number of irreducible cubics is

$$q^3 - \frac{1}{6}q(q^2 + 3q + 2) - \frac{1}{2}q^2(q - 1) = \frac{1}{3}(q^3 - q).$$

9. (i) $x_1 ldots x_{10} = 3411021756$ implies that

$$\sum ix_i = 3 + 8 + 3 + 4 + 0 + 12 + 7 + 56 + 45 + 60$$
$$= 3 - 3 + 3 + 4 + 0 + 1 - 4 + 1 + 1 + 5 = 0 \text{ in } \mathbf{F}_{11}.$$

So, it is an ISBN.

(ii) $x_1 \dots x_{10} = 285036008X$ implies that

$$\sum ix_i = 2 + 16 + 15 + 0 + 15 + 36 + 0 + 0 + 72 + 100$$
$$= 2 + 5 + 4 + 4 + 3 + 6 + 1 = 25 = 3 \text{ in } \mathbf{F}_{11}.$$

So, it is not an ISBN-10.

10. $x_1 cdots x_{10} = 0521283t87$ implies that

$$\sum ix_i = 0 + 10 + 6 + 4 + 10 + 48 + 21 + 8t + 72 + 70$$

= 8t - 1 in \mathbf{F}_{11} .

So, if it is an ISBN-10, then 8t - 1 = 0, whence t = 7.

Solutions 3 5

11. As 9 digits determine the tenth in an ISBN-10, the minimum distance is greater than 1. If one of the first nine digits in an ISBN-10 is changed, then the check digit can be calculated to make a new ISBN-10; so the minimum distance of the ISBN-10 code is 2. Alternatively, 00...0 and 150...0, say, are at distance 2.

12.

So it is a valid ISBN-13.

13. (i)

Positions 7, 15 have digits at least 5. So

$$76 + x + 2 \equiv 0 \pmod{10} \Rightarrow x = 2.$$

So the codabar number is 4539 2786 4132 1272.

(ii)

Positions 7, 9, 15 have digits at least 5. There are two possibilities:

(a) The fifth digit is at least 5; in this case,

$$76 + 2x + 4 \equiv 0 \pmod{10} \Rightarrow x = 5.$$

(b) The fifth digit is at most 4; in this case,

$$76 + 2x + 3 \equiv 0 \pmod{10}$$
, impossible.

So the codabar number is 4929 5462 7341 3478.